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(This publication is adapted from the Unified Facilities Criteria of the United States 
government which are in the public domain, have been authorized for unlimited 
distribution, and are not copyrighted.) 
 
(Figures, tables and formulas in this publication may at times be a little difficult to read, 
but they are the best available.  DO NOT PURCHASE THIS PUBLICATION IF THIS 
LIMITATION IS NOT ACCEPTABLE TO YOU.) 
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1. ANALYSIS OF GROUNDWATER FLOW. 

 

1.1 DESIGN OF A DEWATERING and pressure relief or groundwater control system 

first requires determination of the type of groundwater flow (artesian, gravity, or 

combined) to be expected and of the type of system that will be required. Also, a 

complete picture of the groundwater and the subsurface condition is necessary. Then 

the number, size, spacing, and penetration of wellpoints or wells and the rate at which 

the water must be removed to achieve the required groundwater lowering or pressure 

relief must be determined. 

 

1.2  IN THE ANALYSIS OF ANY DEWATERING SYSTEM, the source of seepage 

must be determined and the boundaries and seepage flow characteristics of geologic 

and soil formations at and adjacent to the site must be generalized into a form that can 

be analyzed. In some cases, the dewatering system and soil and groundwater flow 

conditions can be generalized into rather simple configurations. For example, the 

source of seepage can be reduced to a line or circle; the aquifer to a homogeneous, 

isotropic formation of uniform thickness; and the dewatering system to one or two 

parallel lines or circle of wells or wellpoints. Analysis of these conditions can generally 

be made by means of mathematical formulas for flow of groundwater. Complicated 

configurations of wells, sources of seepage, and soil formations can, in most cases, be 

solved or at least approximated by means of flow nets, electrical analogy models, 

mathematical formulas, numerical techniques, or a combination of these methods. 

 

1.3 ANY ANALYSIS, EITHER mathematical, flow net, or electrical analogy, is not 

better than the validity of the formation boundaries and characteristics used in the 

analysis. The solution obtained, regardless of the rigor or precision of the analysis, will 

be representative of actual behavior only if the problem situation and boundary 

conditions are adequately represented. An approximate solution to the right problem is 

far more desirable than a precise solution to the wrong problem. The importance of 

formulating correct groundwater flow and boundary conditions, cannot be emphasized 

too strongly. 
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1.4 METHODS FOR DEWATERING AND PRESSURE RELIEF and their suitability for 

various types of excavations and soil conditions are described in the technical 

literature. The investigation of factors relating to groundwater flow and to design of 

dewatering systems are discussed in the technical literature. Mathematical, graphical, 

and electroanalogous methods of analyzing seepage flow through generalized soil 

conditions and boundaries to various types of dewatering or pressure relief systems 

are presented in the technical literature. 

 

1.5 OTHER FACTORS THAT have a bearing on the actual design of dewatering, 

permanent drainage, and surface- water control systems are considered in this 

discussion. 

 

1.6 THE FORMULAS AND FLOW NET PROCEDURES presented in this discussion 

are for a steady state of groundwater flow. During initial stages of dewatering an 

excavation, water is removed from storage and the rate of flow is larger than required 

to maintain the specified drawdown. Therefore, initial pumping rates will probably be 

about 30 percent larger than computed values. 
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2. MATHEMATICAL AND MODEL ANALYSES. 

 

2.1 GENERAL. 

 

2.1.1 DESIGN. Design of a dewatering system requires the determination of the 

number, size, spacing, and penetration of wells or wellpoints and the rate at which 

water must be removed from the pervious strata to achieve the required groundwater 

lowering or pressure relief. The size and capacity of pumps and collectors also depend 

on the required discharge and drawdown. The fundamental relations between well and 

wellpoint discharge and corresponding drawdown are presented in this discussion. 

The equations presented assume that the flow is laminar, the pervious stratum is 

homogeneous and isotropic, the water draining into the system is pumped out at a 

constant rate, and flow conditions have stabilized. Procedures for transferring an 

anisotropic aquifer, with respect to permeability, to an isotropic section are presented 

in the technical literature. 

 

2.1.2 SLOTS AND WELLS. The equations referenced are in two groups: flow and 

drawdown to slots and flow and drawdown to wells. Equations for slots are applicable 

to flow to trenches, French drains, and similar drainage systems. They may also be 

used where the drainage system consists of closely spaced wells or wellpoints. 

Assuming a well system equivalent to a slot usually simplifies the analysis; however, 

corrections must be made to consider that the drainage system consists of wells or 

wellpoints rather than the more efficient slot. These corrections are given with the well 

formulas discussed below. When the well system cannot be simulated with a slot, well 

equations must be used. The equations for slots and wells do not consider the effects 

of hydraulic head losses Hw in wells or wellpoints; procedures for accounting for these 

effects are presented separately. 

 

2.1.3 RADIUS OF INFLUENCE R. Equations for flow to drainage systems from a 

circular seepage source are based on the assumption that the system is centered on 

an island of radius R. Generally, R is the radius of influence that is defined as the 
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radius of a circle beyond which pumping of a dewatering system has no significant 

effect on the original groundwater level or piezometric surface. Where there is little or 

no recharge to an aquifer, the radius of influence will become greater with pumping 

time and with increased drawdown in the area being dewatered. Generally, R is 

greater for coarse, very pervious sands than for finer soils. If the value of R is large 

relative to the size of the excavation, a reasonably good approximation of R will serve 

adequately for design because flow and drawdown for such a condition are not 

especially sensitive to the actual value of R. As it is usually impossible to determine R 

accurately, the value should be selected conservatively from pumping test data or the 

technical literature. 

 

2.1.4 WETTED SCREEN. There should always be sufficient well and screen length 

below the required drawdown in a well in the formation being dewatered so that the 

design or required pumping rate does not produce a gradient at the interface of the 

formation and the well filter (or screen) or at the screen and filter that starts to cause 

the flow to become turbulent. Therefore, the design of a dewatering system should 

always be checked to see that the well or wellpoints have adequate “wetted screen 

length hws” or submergence to pass the maximum computed flow. The limiting flow qc 

into a filter or well screen is approximately equal to 
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Figure 1 

Head at center of fully and partially penetrating circular slots; 

circular source; artesian flow. 
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Figure 2 

Flow and drawdown at slot for fully and partially penetrating rectangular slots; circular 

source; artesian flow. 
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Figure 3 

Head within a partially penetrating rectangular slot; circular source; artesian flow 
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2.1.5  HYDRAULIC HEAD LOSS HW. Some equations in the technical literature do not 

consider hydraulic head losses that occur in the filter, screen, collector pipes, etc. 

These losses cannot be neglected, however, and must be accounted for separately. 

The hydraulic head loss through a filter and screen will depend upon the diameter of 

the screen, slot width, and opening per foot of screen, permeability and thickness of 

the filter; any clogging of the filter or screen by incrustation, drilling fluid, or bacteria; 

migration of soil or sand particles into the filter; and rate of flow per foot of screen.  

 

2.1.6 WELL OR SCREEN PENETRATION W/D. 

 

2.1.6.1 EQUATIONS AND GRAPHS for partially penetrating slots or wells are 

generally based on those for fully penetrating drainage systems modified by model 

studies and, in some instances, mathematical derivations. The amount or percent of 

screen penetration required for effective pressure reduction or interception of seepage 

depends upon many factors, such as thickness of the aquifer, distance to the effective 

source of seepage, well or wellpoint radius, stratification, required “wetted screen 

length,” type and size of excavation, and whether or not the excavation penetrates 

alternating pervious and impervious strata or the bottom is underlain at a shallow 

depth by a less pervious stratum of soil or rock. Where a sizeable open excavation or 

tunnel is underlain by a fairly deep stratum of sand and wells are spaced rather widely, 

the well screens should penetrate at least 25 percent of the thickness of the aquifer to 

be dewatered below the bottom of the excavation and more preferably 50 to 100 

percent. Where the aquifer(s) to be dewatered is stratified, the drainage slots or well 

screens should fully penetrate all the strata to be dewatered. If the bottom of an 

excavation in a pervious formation is underlain at a shallow depth by an impervious 

formation and the amount of “wetted screen length” available is limited, the drainage 

trench or well screen should penetrate to the top of the underlying less pervious 

stratum.  The hydraulic head loss through various sizes and types of header or 

discharge pipe, and for certain well screens and (clean) filters is determined from 

laboratory and field tests. 
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2.1.6.2  HEAD LOSSES IN THE SCREENED SECTION of a well Hs are based on 

equal inflow per unit of screen surface and turbulent flow inside the well and is 

equivalent to the entire well flow passing through one-half the screen length. Hydraulic 

head loss within a wellpoint system can be estimated. Flow into a well can be impeded 

by the lack of “wetted screen length,” in addition to hydraulic head losses in the filter or 

through the screens and/or chemical or mechanical clogging of the aquifer and filter. 

 

2.2 FLOW TO A DRAINAGE SLOT. 

 

2.2.1 LINE DRAINAGE SLOTS. Equations presented in the technical literature can be 

used to compute flow and head produced by pumping either a single or a double 

continuous slot of infinite length. These equations assume that the source of seepage 

and the drainage slot are infinite in length and parallel and that seepage enters the 

pervious stratum from a vertical line source. In actuality, the slot will be of finite length, 

the flow at the ends of the slot for a distance of about L/2 (where L equals distance 

between slot and source) will be greater, and the drawdown will be less than for the 

central portion of the slot. Flow to the ends of a fully penetrating slot can be estimated, 

if necessary, from flow-net analyses. 
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Note: A = artesian flow; G = gravity flow; C = combined artesian-gravity 

flow; F = fully penetrating; P = partially penetrating. 

 

Table 1 

Index to figures for flow, head, or drawdown equations for given corrections 

 

2.2.2 CIRCULAR AND RECTANGULAR SLOTS. Equations for flow and head or 

drawdown produced by circular and rectangular slots supplied by a circular seepage 

source are given in the technical literature. Equations for flow from a circular seepage 

source assume that the slot is located in the center of an island of radius R. For many 

dewatering projects, R is the radius of influence rather than the radius of an island, 

and procedures for determining the value of R are discussed in the technical literature. 
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Dewatering systems of relatively short length are considered to have a circular source 

where they are far removed from a line source such as a river or shoreline. 

 

2.2.3 USE OF SLOTS FOR DESIGNING WELL SYSTEMS. Wells can be substituted 

for a slot; and the flow Qw, drawdown at the well (H-hw) neglecting hydraulic head 

losses at and in the well, and head midway between the wells above that in the wells 

ΔHm can be computed  from the equations given in the technical literature for a (single) 

line source for artesian and gravity flow for both “fully” and “partially” penetrating wells 

where the well spacing a is substituted for the length of slot x. 

 

2.2.4 PARTIALLY PENETRATING SLOTS. The equations for gravity flow to partially 

penetrating slots are only considered valid for relatively high-percent penetrations. 

 

2.3 FLOW TO WELLS. 

 

2.3.1  FLOW TO WELLS FROM A CIRCULAR SOURCE. 

 

2.3.1.1 EQUATIONS FOR FLOW and drawdown produced by a single well supplied 

by a circular source are given in the technical literature. It is apparent that 

considerable computation is required to determine the height of the phreatic surface 

and resulting drawdown in the immediate vicinity of a gravity well (r/h less than 0.3). 

The drawdown in this zone usually is not of special interest in dewatering systems and 

seldom needs to be computed. However, it is always necessary to compute the water 

level in the well for the selection and design of the pumping equipment. 

 

2.3.1.2 THE GENERAL EQUATIONS for flow and drawdown produced by pumping a 

group of wells supplied by a circular source are given in the technical literature. These 

equations are based on the fact that the drawdown at any point is the summation of 

drawdowns produced at that point by each well in the system. The drawdown factors F 

to be substituted into the general equations appear in the equations for both artesian 
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and gravity flow conditions. Consequently, the factors given in the technical literature 

for commonly used well arrays are applicable for either condition. 

 

2.3.1.3 FLOW AND DRAWDOWN for circular well arrays can also be computed, in a 

relatively simple manner, by first considering the well system to be a slot. However, 

the piezometric head in the vicinity of the wells (or wellpoints) will not correspond 

exactly to that determined for the slot due to convergence of flow to the wells. The 

piezometric head in the vicinity of the well is a function of well flow Qw; well spacing a; 

well penetration W; effective well radius rw; aquifer thickness D, or gravity head H; and 

aquifer permeability k.  

 

2.3.2 FLOW TO WELLS FROM A LINE SOURCE. 

 

2.3.2.1 EQUATIONS ARE GIVEN in the technical literature for flow and drawdown 

produced by pumping a single well or group of fully penetrating wells supplied from an 

infinite line source were developed using the method of image wells. The image well (a 

recharge well) is located as the mirror image of the real well with respect to the line 

source and supplies the pervious stratum with the same quantity of water as that being 

pumped from the real well. 

 

2.3.2.2 THE EQUATIONS GIVEN in the technical literature for multiple-well systems 

supplied by a line source are based on the fact that the drawdown at any point is the 

summation of drawdowns produced at that point by each well in the system. 

Consequently, the drawdown at a point is the sum of the drawdowns produced by the 

real wells and the negative drawdowns produced by the image or recharge wells. 

 

2.3.2.3 EQUATIONS ARE GIVEN in the technical literature for flow and drawdown 

produced by pumping an infinite line at wells supplied by a (single) line source. The 

equations are based on the equivalent slot assumption. Where twice the distance to a 

single line source or 2L is greater than the radius of influence R, the value of R as 

determined from a pumping test or from the technical literature should be used in lieu 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com                                     PDHonline Course C802                                 www.PDHonline.org 

 

©2015   J. Paul Guyer                                                                                                                           Page 16 of 64 

of L unless the excavation is quite large or the tunnel is long, in which case equations 

for a line source or a flow-net analysis should be used. 

 

2.3.2.4 EQUATIONS FOR COMPUTING the head midway between wells above that 

in the wells Ah, are not given in this discussion for two line sources adjacent to a 

single line of wells. However, such can be readily determined from (plan) flow-net 

analyses. 

 

2.3.3 LIMITATIONS ON FLOW TO A PARTIALLY PENETRATING WELL. 

Theoretical boundaries for a partially penetrating well (for artesian flow) are 

approximate relations intended to present in a simple form the results of more rigorous 

but tedious computations. The rigorous computations were made for ratios of R/D = 

4.0 and 6.7 and a ratio R/rw = 1000. As a consequence, any agreement between 

experimental and computed values cannot be expected except for the cases with 

these particular boundary conditions. In model studies the flow from a partially 

penetrating well was based on the formula: 

 

 

 

Shown is some of the results obtained for wells of various penetrations centered inside 

a circular source. Also presented are boundary curves computed for well-screen 

penetrations of 2 and 50 percent.  Comparison of data computed from model data with 
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that computed from the boundary formulas indicates fairly good agreement for well 

penetrations > 25 percent and values of R/D between about 5 and 15 where R/rw > 

200 to 1000. Other empirical formulas for flow from a partially penetrating well suffer 

from the same limitations. 

 

2.3.4 PARTIALLY PENETRATING WELLS. The equations for gravity flow to partially 

penetrating wells are only considered valid for relatively high-percent penetrations. 
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3.  FLOW-NET ANALYSES. 

 

3.1  FLOW NETS ARE VALUABLE where irregular configurations of the source of 

seepage or of the dewatering system make mathematical analyses complex or 

impossible. However, considerable practice in drawing and studying good flow nets is 

required before accurate flow nets can be constructed. 

 

3.2  A FLOW NET IS A GRAPHICAL REPRESENTATION of flow of water through an 

aquifer and defines paths of seepage (flow lines) and contours of equal piezometric 

head (equipotential lines). A flow net may be constructed to represent either a plan or 

a section view of a seepage pattern. Before a sectional flow net can be constructed, 

boundary conditions affecting the flow pattern must be delineated and the pervious 

formation transformed into one where kn = kv . In drawing a flow net, the following 

general rules must be observed: 

 

3.2.1 FLOW LINES AND equipotential lines intersect at right angles and form 

curvilinear squares or rectangles. 

 

3.2.2 THE FLOW BETWEEN any two adjacent flow lines and the head loss between 

any two adjacent equipotential lines are equal, except where the plan or section 

cannot be divided conveniently into squares, in which case a row of rectangles will 

remain with the ratio of the lengths to the sides being constant. 

 

3.2.3 A DRAINAGE SURFACE exposed to air is neither an equipotential nor flow line, 

and the squares at this surface are incomplete; the flow and equipotential lines need 

not intersect such a boundary at right angles. 

 

3.2.4 FOR GRAVITY FLOW, equipotential lines intersect the phreatic surface at equal 

intervals of elevation, each interval being a constant fraction of the total net head. 
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3.3  FLOW NETS ARE LIMITED to analysis in two dimensions; the third dimension in 

each case is assumed infinite in extent. An example of a sectional flow net showing 

artesian flow from two line sources to a partially penetrating drainage slot is indicated. 

An example of a plan flow net showing artesian flow from a river to a line of relief wells 

is also indicated. 

 

3.4 THE FLOW PER UNIT LENGTH (for sectional flow nets) or depth (for plan flow 

nets) can be computed. Drawdowns from either sectional or plan flow nets can be 

computed as well.  In plan flow nets for artesian flow, the equipotential lines 

correspond to various values of Hh, whereas for gravity flow, they correspond to H2-h2. 

Since section equipotential lines for gravity flow conditions are curved rather than 

vertical, plan flow nets for gravity flow conditions give erroneous results for large 

drawdowns and should always be used with caution. 

 

3.5 PLAN FLOW NETS GIVE erroneous results if used to analyze partially penetrating 

drainage systems, the error being inversely proportional to the percentage of 

penetration. They give fairly accurate results if the penetration of the drainage system 

exceeds 80 percent and if the heads are adjusted as described in the following 

paragraph. 

 

3.6 IN PREVIOUS ANALYSES of well systems by means of flow nets, it was assumed 

that dewatering or drainage wells were spaced sufficiently close to be simulated by a 

continuous drainage slot and that the drawdown (H-hD) required to dewater an area 

equaled the average drawdown at the drainage slot or in the lines of wells (H-h). 

These analyses give the amount of flow QT that must be pumped to achieve H-hD but 

do not give the drawdown at the wells. The drawdown at the wells required to produce 

H-ho downstream or within a ring of wells can be computed (approximately) for 

artesian flow from plan flow nets by the equations shown in if the wells have been 

spaced proportional to the flow. The drawdown at fully penetrating gravity wells can 

also be computed. 
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Figure 4 

Shape factors for wells of various penetrations centered inside a circular source 
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4. ELECTRICAL ANALOGY SEEPAGE MODELS. 

 

4.1 THE LAWS GOVERNING FLOW of fluids through porous media and flow of 

electricity through pure resistance are mathematically similar. Thus, it is feasible to use 

electrical models to study seepage flows and pressure distribution for various seepage 

conditions. Both two and three-dimensional models can be used to solve seepage 

problems. 

 

4.2  DARCY’S LAW FOR TWO-DIMENSIONAL flow of water through soil can be 

expressed for unit length of soil formations as follows: 
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Figure 5  

Flow and drawdown to wells computed from flow-net analyses 
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Since the permeability in fluid flow is analogous to the reciprocal of the specific 

resistance for geometrically similar mediums, the shape factors for Darcy’s law and 

Ohm’s law are the same. 

 

4.3  A TWO-DIMENSIONAL FLOW NET can be constructed using a scale model of 

the flow and drainage system made of a conductive material representing the porous 

media (graphite-treated paper or an electrolyte solution), copper or silver strips for 

source of seepage and drainage, and nonconductive material representing impervious 

flow boundaries.  The electrical circuit consists of a potential applied across the model 

and a wheatstone bridge to control intermediate potentials on the model. The flow net 

is constructed by tracing lines of constant potential on the model, thus establishing the 

flow-net equipotential lines after which the flow lines are easily added graphically.  A 

flow net constructed using an electrical analogy model may be analyzed in the same 

manner as the one constructed. 

 

4.4  THE EQUIPMENT FOR CONDUCTING three-dimensional electrical analog model 

studies consists basically of a large plexiglass tank filled with diluted copper sulfate 

solution and having a calibrated, elevated carrier assembly for the accurate positioning 

of a point electrode probe anywhere in the fluid medium. A prototype is simulated by 

fabricating appropriately shaped and sealed source and sink configurations and 

applying an electrical potential across them.  The model is particularly useful for 

analyzing complex boundary conditions that cannot be readily analyzed by two-

dimensional techniques. 
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5.  NUMERICAL ANALYSES. 

 

5.1  MANY COMPLEX SEEPAGE PROBLEMS, including such categories as steady 

confined, steady unconfined, and transient unconfined can be solved using the finite 

element method.  

 

5.2  A GENERAL COMPUTER CODE for analyzing partially penetrating random well 

arrays has been developed based on results of three-dimensional electrical analogy 

model tests. The computer code provides a means for rapidly analyzing trial well 

systems in which the number of wells and their geometric configuration can be varied 

to determine quantities of seepage and head distributions. Wells of different radii and 

penetrations can be considered in the analysis. 

 

  

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com                                     PDHonline Course C802                                 www.PDHonline.org 

 

©2015   J. Paul Guyer                                                                                                                           Page 25 of 64 

6.  WELLPOINTS, WELLS, AND FILTERS. Wells and wellpoints should be of a type 

that will prevent infiltration of filter material or foundation sand, offer little resistance to 

the inflow of water, and resist corrosion by water and soil. Wellpoints must also have 

sufficient penetration of the principal water-carrying strata to intercept seepage without 

excessive residual head between the wells or within the dewatered area. 

 

6.1 WELLPOINTS. Where large flows are anticipated, a high-capacity type of wellpoint 

should be selected. The inner suction pipe of self-jetting wellpoints should permit 

inflow of water with a minimum hydraulic head loss. Self-jetting wellpoints should be 

designed so that most of the jet water will go out the tip of the point, with some 

backflow to keep the screen flushed clean while jetting the wellpoint in place. 

 

6.1.1 WELLPOINT SCREENS. Generally, wellpoints are covered with 30- to 60-mesh 

screen or have an equivalent slot opening (0.010 to 0.025 inch). The mesh should 

meet filter criteria given in below. Where the soil to be drained is silty or fine sand, the 

yield of the wellpoint and its efficiency can be greatly improved by placing a relatively 

uniform, medium sand filter around the wellpoint. The filter should be designed in 

accordance with criteria subsequently set forth in below. A filter will permit the use of 

screens or slots with larger openings and provide a more pervious material around the 

wellpoint, thereby increasing its effective radius (d below). 

 

6.1.2  WELLPOINT HYDRAULICS. The hydraulic head losses in a wellpoint system 

must be considered in designing a dewatering system.  

 

6.2  WELLS. Wells for temporary dewatering and permanent drainage systems may 

have diameters ranging from 4 to 18 inches with a screen 20 to 75 feet long depending 

on the flow and pump size requirements. 

 

6.2.1 WELL SCREENS. Screens generally used for dewatering wells are slotted (or 

perforated) steel pipe, perforated steel pipe wrapped with galvanized wire, galvanized 

wire wrapped and welded to longitudinal rods, and slotted polyvinyl chloride (PVC) 
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pipe. Riser pipes for most dewatering wells consist of steel or PVC pipe. Screens and 

riser for permanent wells are usually made of stainless steel or PVC. Good practice 

dictates the use of a filter around dewatering wells, which permits the use of fairly 

large slots or perforations, usually 0.025 to 0.100 inch in size. The slots in well screens 

should be as wide as possible but should meet criteria given in below. 

 

6.2.2 OPEN SCREEN AREA. The open area of a well screen should be sufficient to 

keep the entrance velocity for the design flow low to reduce head losses and to 

minimize incrustation of the well screen in certain types of water. For temporary 

dewatering wells installed in non-incrusting groundwater, the entrance velocity should 

not exceed about 0.15 to 0.20 foot per second; for incrusting groundwater, the 

entrance velocity should not exceed 0.10 to 0.20 foot per second. For permanent 

drainage wells, the entrance velocity should not exceed about 0.10 foot per second. 

As the flow to and length of a well screen is usually dictated by the characteristics of 

the aquifer and drawdown requirements, the required open screen area can be 

obtained by using a screen of appropriate diameter with a maximum amount of open 

screen area. 

 

6.3 FILTERS. Filters are usually 3 to 5 inches thick for wellpoints and 6 to 8 inches 

thick for large-diameter wells. To prevent infiltration of the aquifer materials into the 

filter and of filter materials into the well or wellpoint, without excessive head losses, 

filters should meet the following criteria: 
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If the filter is to be tremied in around the screen for a well or wellpoint, it may be either 

uniformly or rather widely graded; however, if the filter is not tremied into place, it 

should be quite uniformly graded and poured in around the well in a heavy continuous 

stream to minimize segregation. 
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Figure 6 

Typical design of a filter for a well or wellpoint 

 

6.4 EFFECTIVE WELL RADIUS. The “effective” radius rw of a well is that well radius 

which would have no hydraulic entrance loss Hw. If well entrance losses are 

considered separately in the design of a well or system of wells, rw for a well or 

wellpoint without a filter may be considered to be one-half the outside diameter of the 

well screens; where a filter has been placed around a wellpoint or well screen, rw may 

generally be considered to be one-half the outside diameter or the radius of the filter. 

 

6.5 WELL PENETRATION. In a stratified aquifer, the effective well penetration usually 

differs from that computed from the ratio of the length of well screen to total thickness 

of the aquifer.  

 

6.6 SCREEN LENGTH, PENETRATION, AND DIAMETER. The length and 

penetration of the screen depends on the thickness and stratification of the strata to be 

dewatered. The length and diameter of the screen and the area of perforations should 

be sufficient to permit the inflow of water without exceeding the entrance velocity given 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com                                     PDHonline Course C802                                 www.PDHonline.org 

 

©2015   J. Paul Guyer                                                                                                                           Page 29 of 64 

above. The “wetted screen length hws” (or hw for each stratum to be dewatered) is 

equal to or greater than Qw/qc . The diameter of the well screen should be at least 3 to 

4 inches larger than the pump bowl or motor. 
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7.  PUMPS, HEADERS, AND DISCHARGE PIPES. The capacity of pumps and piping 

should allow for possible reduction in efficiency because of incrustation or mechanical 

wear caused by prolonged operation. This equipment should also be designed with 

appropriate valves, crossovers, and standby units so that the system can operate 

continuously, regardless of interruption for routine maintenance or breakdown. 

 

7.1 CENTRIFUGAL AND WELLPOINT PUMPS. 

 

7.1.1  CENTRIFUGAL PUMPS CAN be used as sump pumps, jet pumps, or in 

combination with an auxiliary vacuum pump as a wellpoint pump. The selection of a 

pump and power unit depends on the discharge, suction lift, hydraulic head losses, 

including velocity head and discharge head, air-handling requirement, power available, 

fuel economy, and durability of unit. A wellpoint pump, consisting of a self-priming 

centrifugal pump with an attached auxiliary vacuum pump, should have adequate air-

handling capacity and be capable of producing a vacuum of at least 22 to 25 feet of 

water in the headers. The suction lift of a wellpoint pump is dependent on the vacuum 

available at the pump bowl, and the required vacuum must be considered in 

determining the pumping capacity of the pump. Characteristics of a typical wellpoint 

pump vacuum unit are shown in figure 7. Sump pumps of the centrifugal type should 

be self-priming and capable of developing at least 20 feet of vacuum. Jet pumps are 

high head pumps; typical characteristics of a typical 6-inch jet pump are shown in 

figure 8.  
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 Figure 7 

Characteristics of typical vacuum unit for wellpoint pumps 
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Figure 8 

Characteristics of 6-inch jet pump 

 

7.1.2  EACH WELLPOINT PUMP SHOULD be provided with one connected standby 

pump so as to ensure continuity of operation in event of pump or engine failure, or for 

repair or maintenance. By overdesigning the header pipe system and proper 

placement of valves, it may be possible to install only one standby pump for every two 

operational pumps. If electric motors are used for powering the normally operating 

pumps, the standby pumps should be powered with diesel, natural or LP gas, or 

gasoline engines. The type of power selected will depend on the power facilities at the 

site and the economics of installation, operation, and maintenance. It is also advisable 

to have spare power units on site in addition to the standby pumping units. Automatic 

switches, starters, and valves may be required if failure of the system is critical. 

 

7.2  DEEP-WELL PUMPS. 

 

7.2.1  DEEP-WELL TURBINE OR SUBMERSIBLE PUMPS are generally used to 

pump large-diameter deep wells and consist of one or more stages of impellers on a 
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vertical shaft. Turbine pumps can also be used as sump pumps, but adequate stilling 

basins and trash racks are required to assure that the pumps do not become clogged. 

Motors of most large-capacity turbine pumps used in deep wells are mounted at the 

ground surface. Submersible pumps are usually used for pumping deep, low-capacity 

wells, particularly if a vacuum is required in the well. 

 

7.2.2  IN THE DESIGN OF DEEP-WELL pumps, consideration must be given to 

required capacity, size of well screen and riser pipe, total pumping head, and the 

lowered elevation of the water in the well. The diameter of the pump bowl must be 

determined before the wells are installed, as the inside diameter of the well casing 

should be at least 3 to 4 inches larger in diameter than the pump bowl. Approximate 

capacities of various turbine pumps are presented in table 2.  

 

7.2.3 SUBMERSIBLE PUMPS REQUIRE either electric power from a commercial 

source or one or more motor generators. If commercial power is used, 75 to 100 

percent of (connected) motor generator power, with automatic starters unless 

operational personnel are on duty at all times, should be provided as standby for the 

commercial power. Spare submersible pumps, generally 10 to 20 percent of the 

number of operating pumps, as well as spare starters, switches, heaters, and fuses, 

should also be kept at the site. 

 

7.2.4 DEEP-WELL TURBINE PUMPS can be powered with either electric motors or 

diesel engines and gear drives. Where electric motors are used, 50 to 100 percent of 

the pumps should be equipped with combination gear drives connected to diesel 

(standby) engines. The number of pumps so equipped would depend upon the 

criticality of the dewatering or pressure relief needs. Motor generators may also be 

used as standby for commercial power. For some excavations and subsurface 

conditions, automatic starters may be required for the diesel engines or motor 

generators being used as backup for commercial power. 
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7.3 TURBOVACUUM PUMPS. For some wellpoint systems requiring high pumping 

rates, it may be desirable to connect the header pipe to a 30- or 36-inch collection tank 

about 20 or 30 feet deep, sealed at the bottom and top, and pump the flow into the 

tank with a high-capacity deepwell turbine pump using a separate vacuum pump 

connected to the top of the tank to produce the necessary vacuum in the header pipe 

for the wells or wellpoints. 

 

7.4 HEADER PIPE. 

 

7.4.1 HYDRAULIC HEAD LOSSES caused by flow through the header pipe, reducers, 

tees, fittings, and valves should be computed and kept to a minimum (1 to 3 feet) by 

using large enough pipe. These losses can be computed from equivalent pipe lengths 

for various fittings and curves. 

 

7.4.2 WELLPOINT HEADER PIPES should be installed as close as practical to the 

prevailing groundwater elevation and in accessible locations. Wellpoint pumps should 

be centrally located so that head losses to the ends of the system are balanced and as 

low as possible. If suction lift is critical, the pump should be placed low enough so that 

the pump suction is level with the header, thereby achieving a maximum vacuum in 

the header and the wellpoints. If construction is to be performed in stages, sufficient 

valves should be provided in the header to permit addition or removal of portions of the 

system without interrupting operation of the remainder of the system. Valves should 

also be located to permit isolation of a portion of the system in case construction 

operations should break a swing connection or rupture a header. 

 

7.4.3 DISCHARGE LINES should be sized so that the head losses do not create 

excessive back pressure on the pump. Ditches may be used to carry the water from 

the construction site, but they should be located well back of the excavation and 

should be reasonably watertight. 
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8. FACTORS OF SAFETY. 

 

8.1 GENERAL. The stability of soil in areas of seepage emergence is critical in the 

control of seepage. The exit gradient at the toe of a slope or in the bottom of an 

excavation must not exceed that which will cause surface raveling or sloughing of the 

slope, piping, or heave of the bottom of the excavation. 

 

8.2  UPLIFT. Before attempting to control seepage, an analysis should be made to 

ensure that the seepage or uplift gradient is equal to or less than that computed from 

the following equations: 

 

 

 

 

In stratified subsurface soils, such as a course-grained pervious stratum overlain by a 

finer grained stratum of relatively low permeability, most of the head loss through the 

entire section would probably occur through the finer grained material. Consequently, 

a factor of safety based on the head loss through the top stratum would probably 

indicate a more critical condition than if the factor of safety was computed from the 
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total head loss through the entire section. Also, when gradients in anisotropic soils are 

determined from flow nets, the distance over which the head is lost must be obtained 

from the true section rather than the transformed section. 

 

8.3 PIPING. Piping cannot be analyzed by any rational method. In a study of piping 

beneath hydraulic structures founded on granular soils, it was recommended that the 

(weighted) creep ratio Cw should equal or exceed the values shown in the technical 

literature for various types of granular soils. 

 

 

 

where H - he represents vertical distance from the groundwater table to the bottom of 

the excavation. These criteria for piping are probably only applicable to dewatering of 

sheeted, cellular, or earth-dike cofferdams founded on granular soils. Once piping 

develops, erosion of the soil may accelerate rapidly. As the length of seepage flow is 

reduced, the hydraulic gradient and seepage velocity increase, with a resultant 

acceleration in piping and erosion. Piping can be controlled by lowering the 

groundwater table in the excavated slopes or bottom of an excavation, or in either less 

critical situations or emergencies by placement of filters over the seepage exit surface 

to prevent erosion of the soil but still permit free flow of the seepage. The gradation of 

the filter material should be such that the permeability is high compared with the 

aquifer, yet fine enough that aquifer materials will not migrate into or through the filter. 

More than one layer of filter material may be required to stabilize a seeping slope or 

bottom of an excavation in order to meet these criteria. 

 

8.4 DEWATERING SYSTEMS. As in the design of any works, the design of a 

dewatering system should include a factor of safety to cover the variations in 

characteristics of the subsurface soils, stratification, and groundwater table; the 

incompleteness of the data and accuracy of the formulations on which the design is 
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based; the reduction in the efficiency of the dewatering system with time; the frailties of 

machines and operating personnel; and the criticality of failure of the system with 

regard to safety, economics, and damage to the project. All of these factors should be 

considered in selecting the factor of safety. The less information on which the design is 

based and the more critical the dewatering is to the success of the project, the higher 

the required factor of safety. Suggested factors of safety and design procedures are as 

follows: 

 

(1) Select or determine the design parameters as accurately as possible from existing 

information. 

(2) Use applicable design procedures and equations set forth in this manual. 

(3) Consider the above enumerated factors in selecting a factor of safety. 

(4) Evaluate the experience of the designer. 

(5) After having considered steps l-4, the following factors of safety are considered 

appropriate for modifying computed design values for flow, drawdown, well spacing, 

and required “wetted screen length.” 

 

In addition to these factors of safety being applied to design features of the system, 

the system should be pump-tested to verify its adequacy for the maximum required 

groundwater lowering and maximum river or groundwater table likely (normally a 

frequency of occurrence of once in 5 to 10 years for the period of exposure) to occur.  
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9. DEWATERING OPEN EXCAVATIONS. An excavation can be dewatered or the 

artesian pressure relieved by one or a combination of methods. The design of 

dewatering and groundwater control systems for open excavations, shafts, and tunnels  

is discussed in the following paragraphs.  

 

9.1 TRENCHING AND SUMP PUMPING. 

 

9.1.1 THE APPLICABILITY OF TRENCHES and sump pumping for dewatering an 

open excavation is discussed in the technical literature.  Where soil conditions and the 

depth of an excavation below the water table permit trenching and sump pumping of 

seepage, the rate of flow into the excavation can be estimated from plan and sectional 

flow analyses or formulas presented. 

 

9.1.2 WHERE AN EXCAVATION EXTENDS into rock and there is a substantial inflow 

of seepage, perimeter drains can be installed at the foundation level outside of the 

formwork for a structure. The perimeter drainage system should be connected to a 

sump sealed off from the rest of the area to be concreted, and the seepage water 

pumped out. After construction, the drainage system should be grouted. Excessive 

hydrostatic pressures in the rock mass endangering the stability of the excavated face 

can be relieved by drilling 4-inchdiameter horizontal drain holes into the rock at 

approximately lo-foot centers. For large seepage inflow, supplementary vertical holes 

for deep-well pumps at 50- to 100-foot intervals may be desirable for temporary 

lowering of the groundwater level to provide suitable conditions for concrete 

placement. 

 

9.2 WELLPOINT SYSTEM. The design of a line or ring of wellpoints pumped with 

either a conventional wellpoint pump or jet-eductors is generally based on 

mathematical or flow-net analysis of flow and drawdown to a continuous slot. 

 

9.2.1 CONVENTIONAL WELLPOINT SYSTEM. The drawdown attainable per stage of 

wellpoints (about 15 feet) is limited by the vacuum that can be developed by the pump, 
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the height of the pump above the header pipe, and hydraulic head losses in the 

wellpoint and collector system. Where two or more stages of wellpoints are required, it 

is customary to design each stage so that it is capable of producing the total 

drawdown required by that stage with none of the upper stages functioning. However, 

the upper stages are generally left in so that they can be pumped in the event pumping 

of the bottom stage of wellpoints does not lower the water table below the excavation 

slope because of stratification, and so that they can be pumped during backfilling 

operations. 

 

(a) The design of a conventional wellpoint system to dewater an open excavation, as 

discussed, is outlined below. 

 

Step 1. Select dimensions and groundwater coefficients (H, L, and k) of the formation 

to be dewatered based on investigations. 

Step 2. Determine the drawdown required to dewater the excavation or to dewater 

down to the next stage of wellpoints, based on the maximum groundwater level 

expected during the period of operation. 

Step 3. Compute the head at the assumed slot (he or ho) to produce the desired 

residual head hD in the excavation. 

Step 4. Compute the flow per lineal foot of drainage system to the slot QP. 

Step 5. Assume a wellpoint spacing a and compute the flow per wellpoint, QW = aQp. 

Step 6. Calculate the required head at the wellpoint hw corresponding to Qw. 

Step 7. Check to see if the suction lift that can be produced by the wellpoint pump V 

will lower the water level in the wellpoint to h,(p) as follows: 

 

 

where 

 

V= vacuum at pump intake, feet of water 

M = distance from base of pervious strata to pump intake, feet 
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HC = average head loss in header pipe from wellpoint, feet 

HW = head loss in wellpoint, riser pipe, and swing connection to header pipe, feet 

Step 8. Set the top of the wellpoint screen at least 1 to 2 feet or more below hw-Hw to 

provide adequate submergence of the wellpoint so that air will not be pulled into the 

system. 

 

 (b) If an excavation extends below an aquifer into an underlying impermeable soil or 

rock formation, some seepage will pass between the wellpoints at the lower boundary 

of the aquifer. This seepage may be intercepted with ditches or drains inside the 

excavation and removed by sump pumps. If the underlying stratum is a clay, the 

wellpoints may be installed in holes drilled about 1 to 2 feet into the clay and backfilled 

with filter material. By this procedure, the water level at the wellpoints can be 

maintained near the bottom of the aquifer, and thus seepage passing between the 

wellpoints will be minimized. Sometimes these procedures are ineffective, and a small 

dike in the excavation just inside the toe of the excavation may be required to prevent 

seepage from entering the work area. Sump pumping can be used to remove water 

from within the diked area. 

 

9.2.2 JET-EDUCTOR (WELL OR) WELLPOINT SYSTEMS. Flow and drawdown to a 

jet-eductor (well or) wellpoint system can be computed or analyzed as discussed. Jet-

eductor dewatering systems can be designed as follows: 

 

Step 1. Assume the line or ring of wells or wellpoints to be a drainage slot. 

Step 2. Compute the total flow to the system for the required drawdown and 

penetration of the well screens. 

Step 3. Assume a well or wellpoint spacing that will result in a reasonable flow for the 

well or wellpoint and jet-eductor pump. 

Step 4. Compute the head at the well or wellpoint hw required to achieve the desired 

drawdown. 

Step 5. Set eductor pump at M = hw-Hw with some allowance for future loss of well 

efficiency. 
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 (a) If the soil formation being drained is stratified and an appreciable flow of water 

must be drained down through the filter around the riser pipe to the wellpoint, the 

spacing of the wellpoints and the permeability of the filter must be such that the flow 

from formations above the wellpoints does not exceed  

 

 

 

Substitution of small diameter well screens for wellpoints may be indicated for stratified 

formations. Where a formation is stratified or there is little available submergence for 

the wellpoints, jet-eductor wellpoints and risers should be provided with a pervious 

filter, and the wellpoints set at least 10 feet back from the edge of a vertical 

excavation. 

 

(b) Jet-eductor pumps may be powered with individual small high-pressure centrifugal 

pumps or with one or two large pumps pumping into a single pressure pipe furnishing 

water to each eductor with a single return header. With a single-pump setup, the water 

is usually circulated through a stilling tank with an overflow for the flow from wells or 

wellpoints. Design of jet eductors must consider the static lift from the wells or 

wellpoints to the water level in the recirculation tank; head loss in the return riser pipe; 

head loss in the return header; and flow from the wellpoint. The (net) capacity of a jet-

eductor pump depends on the pressure head, input flow, and diameter of the jet 

nozzle in the pump. Generally, a jet-eductor pump requires an input flow of about 2 to 

2½ times the flow to be pumped depending on the operating pressure and design of 

the nozzle. Consequently, if flow from the wells or wellpoints is large, a deep-well 

system will be more appropriate. The pressure header supplying a system of jet 
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eductors must be of such size that a fairly uniform pressure is applied to all of the 

eductors. 

 

9.2.3 VACUUM WELLPOINT SYSTEM. Vacuum wellpoint systems for dewatering 

fine-grained soils are similar to conventional wellpoint systems except the wellpoint 

and riser are surrounded with filter sand that is sealed at the top, and additional 

vacuum pump capacity is provided to ensure development of the maximum vacuum in 

the wellpoint and filter regardless of air loss. In order to obtain 8 feet of vacuum in a 

wellpoint and filter column, with a pump capable of maintaining a 25 foot vacuum in 

the header, the maximum lift is 25 – 8 = 17 feet. Where a vacuum type of wellpoint 

system is required, the pump capacity is small. The capacity of the vacuum pump will 

depend on the air permeability of the soil, the vacuum to be maintained in the filter, the 

proximity of the wellpoints to the excavation, the effectiveness of the seal at the top of 

the filter, and the number of wellpoints being pumped. In very fine-g-rained soils, 

pumping must be continuous. The flow may be so small that water must be added to 

the system to cool the pump properly. 

 

9.3 ELECTROOSMOSIS. 

 

9.3.1 AN ELECTROOSMOTIC DEWATERING SYSTEM consists of anodes (positive 

electrodes, usually a pipe or rod) and cathodes (negative electrodes, usually 

wellpoints or small wells installed with a surrounding filter), across which a d-c voltage 

is applied. The depth of the electrodes should be at least 5 feet below the bottom of 

the slope to be stabilized. The spacing and arrangement of the electrodes may vary, 

depending on the dimensions of the slope to be stabilized and the voltage available at 

the site. Cathode spacings of 25 to 40 feet have been used, with the anodes installed 

midway between the cathodes. Electrical gradients of 1.5- to 4-volts-per-foot distance 

between electrodes have been successful in electroosmotic stabilization. The electrical 

gradient should be less than about 15 volts per foot of distance between electrodes for 

long-term installations to prevent loss in efficiency due to heating the ground. Applied 
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voltages of 30 to 100 volts are usually satisfactory; a low voltage is usually sufficient if 

the groundwater has a high mineral content. 

 

9.3.2 THE DISCHARGE OF A CATHODE WELLPOINT may be estimated from the 

equation: 

 

 

 

Current requirements commonly range between 15 and 30 amperes per well, and 

power requirements are generally high. However, regardless of the expense of 

installation and operation of an electroosmotic dewatering system, it may be the only 

effective means of dewatering and stabilizing certain silts, clayey silts, and clayey silty 

sands. Electroosmosis may not be applicable to saline soils because of high current 

requirements, nor to organic soils because of environmentally objectionable effluents, 

which may be unsightly and have exceptionally high pH values. 

 

9.4  DEEP-WELL SYSTEMS. 

 

9.4.1 THE DESIGN AND ANALYSIS of a deep-well system to dewater an excavation 

depends upon the configuration of the site dewatered, source of seepage, type of flow 

(artesian and gravity), penetration of the wells, and the submergence available for the 

well screens with the required drawdown at the .wells. Flow and drawdown to wells 

can be computed or analyzed as discussed 
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9.4.2 METHODS ARE PRESENTED whereby the flow and drawdown to a well system 

can be computed either by analysis or by a flow net assuming a continuous slot to 

represent the array of wells, and the drawdown at and between wells computed for the 

actual well spacing and location.  

 

9.4.3 THE SUBMERGED length and size of a well screen should be checked to 

ensure that the design flow per well can be achieved without excessive screen 

entrance losses or velocities. The pump intake should be set so that adequate 

submergence (a minimum of 2 to 5 feet) is provided when all wells are being pumped. 

Where the type of seepage (artesian and gravity) is not well established during the 

design phase, the pump intake should be set 5 to 10 feet below the design elevation to 

ensure adequate submergence. Setting the pump bowl below the expected drawdown 

level will also facilitate drawdown measurements. 

 

9.5 COMBINED SYSTEMS. 

 

9.5.1 WELL AND WELLPOINT SYSTEMS. A dewatering system composed of both 

deep wells and wellpoints may be appropriate where the groundwater table has to be 

lowered appreciably and near to the top of an impermeable stratum. A wellpoint 

system alone would require several stages of wellpoints to do the job, and a well 

system alone would not be capable of lowering the groundwater completely to the 

bottom of the aquifer. A combination of deep wells and a single stage of wellpoints 

may permit lowering to the desired level. The advantages of a combined system, in 

which wells are essentially used in place of the upper stages of wellpoints, are as 

follows: 

 

(a) The excavation quantity is reduced by the elimination of berms for installation and 

operation of the upper stages of wellpoints. 

(b) The excavation can be started without a delay to install the upper stages of 

wellpoints. 
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(c) The deep wells installed at the top of the excavation will serve not only to lower the 

groundwater to permit installation of the wellpoint system but also to intercept a 

significant amount of seepage and thus reduce the flow to the single stage of 

wellpoints.  

 

9.5.2 SAND DRAINS with deep wells and wellpoints. Sand drains can be used to 

intercept horizontal seepage from stratified deposits and conduct the water vertically 

downward into a pervious stratum that can be dewatered by means of wells or 

wellpoints. The limiting feature of dewatering by sand drains is usually the vertical 

permeability of the sand drains itself, which restricts this method of drainage to soils of 

low permeability that yield only a small flow of water. Sand drains must be designed so 

that they will intercept the seepage flow and have adequate capacity to allow the 

seepage to drain downward without any back pressure. To accomplish this, the drains 

must be spaced, have a diameter, and be filled with filter sand so that: 

 

 

 

Generally, sand drains are spaced on 5- to 15-foot centers and have a diameter of 10 

to 18 inches. The maximum permeability kv of a filter that may be used to drain soils 

for which sand drains are applicable is about 1000 to 3000 x 10-4 centimeters per 

second or 0.20 to 0.60 feet per minute, Thus, the maximum capacity QD of a sand 

drain is about 1 to 3 gallons per minute. The capacity of sand drains can be 

significantly increased by installing a small (1- or 1½-inch) slotted PVC pipe in the 

drain to conduct seepage into the drain downward into underlying more pervious strata 

being dewatered. 

 

9.6 PRESSURE RELIEF SYSTEMS. 
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9.6.1 TEMPORARY RELIEF of artesian pressure beneath an open excavation is 

required during construction where the stability of the bottom of the excavation is 

endangered by artesian pressures in an underlying aquifer. Complete relief of the 

artesian pressures to a level below the bottom of the excavation is not always required 

depending on the thickness, uniformity, and permeability of the materials. For uniform 

tight shales or clays, an upward seepage gradient i as high as 0.5 to 0.6 may be safe, 

but clay silts or silts generally require lowering the groundwater 5 to 10 feet below the 

bottom of the excavation to provide a dry, stable work area. 

 

9.6.2 THE FLOW TO A PRESSURE RELIEF SYSTEM is artesian; therefore, such a 

system may be designed or evaluated on the basis of the methods for artesian flow. 

The penetration of the wells or wellpoints need be no more than that required to 

achieve the required drawdown to keep the flow to the system a minimum. If the 

aquifer is stratified and anisotropic, the penetration required should be determined by 

computing the effective penetration into the transformed aquifer as described in 

appendix E.  

 

9.7 CUTOFFS. Seepage cutoffs are used as barriers to flow in highly permeable 

aquifers in which the quantity of seepage would be too great to handle with deepwell 

or wellpoint dewatering systems alone, or when pumping costs would be large and a 

cutoff is more economical. The cutoff should be located far enough back of the 

excavation slope to ensure that the hydrostatic pressure behind the cutoff does not 

endanger the stability of the slope. If possible, a cutoff should penetrate several feet 

into an underlying impermeable stratum. However, the depth of the aquifer or other 

conditions may preclude full penetration of the cutoff, in which case seepage beneath 

the cutoff must be considered. Figure 9 illustrates the effectiveness of a partial cutoff 

for various penetrations into an aquifer. The figure also shows the soils to be 

homogeneous and isotropic with respect to permeability. If, however, the soils are 

stratified or anisotropic with respect to permeability, they must be transformed into an 
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isotropic section and the equivalent penetration computed by the method given in 

appendix E before the curves shown in the figure are applicable. 

 

9.7.1 CEMENT AND CHEMICAL GROUT CURTAIN. Pressure injection of grout into a 

soil or rock may be used to reduce the permeability of the formation in a zone and seal 

off the flow of water. The purpose of the injection of grout is to fill the void spaces with 

cement or chemicals and thus form a solid mass through which no water can flow. 

Portland cement, fly ash, bentonite, and sodium silicate are commonly used as grout 

materials. Generally, grouting pressures should not exceed about 1 pound per square 

inch per foot of depth of the injection. 

 

(a) Portland cement is best adapted to filling voids and fractures in rock and has the 

advantage of appreciably strengthening the formation, but it is ineffective in 

penetrating the voids of sand with an effective grain size of 1 millimeter or less. To 

overcome this deficiency, chemical grouts have been developed that have nearly the 

viscosity of water, when mixed and injected, and later react to form a gel which seals 

the formation Chemical grouts can be injected effectively into soils with an effective 

grain size D10 that is less than 0.1 millimetre. Cement grout normally requires a day or 

two to hydrate and set, whereas chemical grout can be mixed to gel in a few minutes. 

 

(b) Cement grouts are commonly mixed at water- cement ratios of from 5:1 to 10:1 

depending on the grain size of the soils. However, the use of a high water- cement 

ratio will result in greater shrinkage of the cement, so it is desirable to use as little 

water as practical. Bentonite and screened fly ash may be added to a cement grout to 

both improve the workability and reduce the shrinkage of the cement. The setting time 

of a cement grout can be accelerated by using a 1:1 mixture of gypsum-base plaster 

and cement or by adding not more than 3 percent calcium chloride. High-earlystrength 

cement can be used when a short set time is required. 

 

(c) Chemical grouts, both liquid and powderbased, are diluted with water for injection, 

with the proportions of the chemicals and admixtures varied to control the gel time. 
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(d) Injection patterns and techniques vary with grout materials, character of the 

formation, and geometry of the grout curtains. (Grout holes are generally spaced on 2- 

to 5-foot centers.) Grout curtains may be formed by successively regrouting an area at 

reduced spacings until the curtain becomes tight. Grouting is usually done from the top 

of the formation downward. 

 

(e) The most perplexing problem connected with grouting is the uncertainty about 

continuity and effectiveness of the seal. Grout injected under pressure will move in the 

direction of least resistance. If, for example, a sand deposit contains a layer of gravel, 

the gravel may take all the grout injected while the sand remains untreated. Injection 

until the grout take diminishes is not an entirely satisfactory measure of the success of 

a grouting operation. The grout may block the injection hole or penetrate the formation 

only a short distance, resulting in a discontinuous and ineffective grout curtain. The 

success of a grouting operation is difficult to evaluate before the curtain is complete 

and in operation, and a considerable construction delay can result if the grout curtain 

is not effective. A single row of grout holes is relatively ineffective for cutoff purposes 

compared with an effectiveness of 2 or 3 times that of overlapping grout holes.  

 

9.7.2 SLURRY WALLS. The principal features of design of a slurry cutoff wall include: 

viscosity of slurry used for excavation; specific gravity or density of slurry; and height 

of slurry in trench above the groundwater table. The specific gravity of the slurry and 

its level above the groundwater table must be high enough to ensure that the 

hydrostatic pressure exerted by the slurry will prevent caving of the sides of the trench 

and yet not limit operation of the excavating equipment. Neither shall the slurry be so 

viscous that the backfill will not move down through the slurry mix. Typical values of 

specific gravity of slurries used range from about 1.1 to 1.3 (70 to 80 pounds per cubic 

foot) with sand or weighting material added: The viscosity of the slurry for excavating 

slurry wall trenches usually ranges from a Marsh funnel reading of 65 to 90 seconds, 

as required to hold any weighting material added and to prevent any significant loss of 

slurry into the walls of the trench. The slurry should create a pressure in the trench 
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approximately equal to 1.2 times the active earth pressure of the surrounding soil. 

Where the soil at the surface is loose or friable, the upper part of the trench is 

sometimes supported with sand bags or a concrete wall. The backfill usually consists 

of a mixture of soil (or a graded mix of sand-gravel-clay) and bentonite slurry with a 

slump of 4 to 6 inches. 
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Figure 9 

Flow beneath a partially penetrating cutoff wall. 
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9.7.3 STEEL SHEET PILING. Seepage cutoffs may be created by driving a sheet pile 

wall or cells to isolate an excavation in a river or below the water table. Sheet piles 

have the advantage of being commonly available and readily installed. However, if the 

soil contains cobbles or boulders, a situation in which a cutoff wall is applicable to 

dewatering, the driving may be very difficult and full penetration may not be attained. 

Also, obstructions may cause the interlocks of the piling to split, resulting in only a 

partial cutoff. 

 

(a) Seepage through the sheet pile interlocks should be expected but is difficult to 

estimate. As an approximation, the seepage through a steel sheet pile wall should be 

assumed equal to at least 0.01 gallon per square foot of wall per foot of net head 

acting on the wall. The efficiency of a sheet pile cutoff is substantial for short paths of 

seepage but is small or negligible for long paths. 

 

(b) Sheet pile cutoffs that are installed for longterm operation will usually tighten up 

with time as the interlocks become clogged with rust and possible incrustation by the 

groundwater. 

 

9.7.4 FREEZING. Freezing the water in saturated porous soils or rock to form an ice 

cutoff to the flow of groundwater may be applicable to control of groundwater for shafts 

or tunnels where the excavation is small but deep. 
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10. DEWATERING SHAFTS AND TUNNELS. 

 

10.1 THE REQUIREMENTS and design of systems for dewatering shafts and tunnels 

in cohesionless, porous soil or rock are similar to those previously described for open 

excavations. As an excavation for a shaft or tunnel is generally deep, and access is 

limited, deepwells or jet-eductor wellpoints are considered the best method for 

dewatering excavations for such structures where dewatering techniques can be used. 

Grout curtains, slurry cutoff walls, and freezing may also be used to control 

groundwater adjacent to shafts or tunnels. 

 

10.2 WHERE THE SOIL OR ROCK FORMATION is reasonably homogeneous and 

isotropic, a well or jet-eductor system can be designed to lower the water table below 

the tunnel or bottom of the shaft using methods and formulas presented. If the soil or 

rock formation is stratified, the wells must be screened and filtered through each 

pervious stratum, as well as spaced sufficiently close so that the residual head in each 

stratum being drained is not more than 1 or 2 feet. Dewatering stratified soils 

penetrated by a shaft or tunnel by means of deep wells may be facilitated by sealing 

the wells and upper part of the riser pipe and applying a vacuum to the top of the well 

and correspondingly to the filter. Maintenance of a vacuum in the wells and 

surrounding earth tends to stabilize the earth and prevent the emergence of seepage 

into the tunnel or shaft. 

 

10.3 IN COMBINED WELL-VACUUM SYSTEMS, it is necessary to use pumps with a 

capacity in excess of the maximum design flow so that the vacuum will be effective for 

the full length of the well screen. Submersible pumps installed in sealed wells must be 

designed for the static lift plus friction losses in the discharge pipe plus the vacuum to 

be maintained in the well. The pumps must also be designed so that they will pump 

water and a certain amount of air without cavitation. The required capacity of the 

vacuum pump can be estimated from formulas for the flow of air through porous media 

considering the maximum exposure of the tunnel facing or shaft wall at any one time to 

be the most pervious formation encountered, assuming the porous stratum to be fully 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com                                     PDHonline Course C802                                 www.PDHonline.org 

 

©2015   J. Paul Guyer                                                                                                                           Page 54 of 64 

drained. The flow of air through a porous medium, assuming an ideal gas flowing 

under isothermal conditions, is given in the following formula: 
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15- to 20-foot centers have been used to dewater caissons and mine shafts 75 to 250 

feet deep.  
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10.4 IN DESIGNING A WELL SYSTEM TO DEWATER a tunnel or shaft, it should be 

assumed that any one well or pumping unit may go out of operation. Thus, any 

combination of the other wells and pumping units must have sufficient capacity to 

provide the required water table lowering or pressure relief. Where electrical power is 

used to power the pumps being used to dewater a shaft or tunnel, a standby generator 

should be connected to the system with automatic starting and transfer equipment or 

switches. 
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11. PERMANENT PRESSURE RELIEF SYSTEMS. Permanent drainage or pressure 

relief systems can be designed using equations and considerations previously 

described for various groundwater and flow conditions. The well screen, collector 

pipes, and filters should be designed for long service and with access  provided for 

inspection and reconditioning during the life of the project. Design of permanent relief 

or drainage systems should also take into consideration potential encrustation and 

screen loss. The system should preferably be designed to function as a gravity system 

without mechanical or electrical pumping and control equipment. Any mechanical 

equipment for the system should be selected for its simplicity and dependability of 

operation. If pumping equipment and controls are required, auxiliary pump and power 

units should be provided. Piezometers and flow measuring devices should be included 

in the design to provide a means for controlling the operation and evaluating its 

efficiency. 
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12. FREEZING. 

 

12.1 GENERAL. 

 

12.1.1 THE CONSTRUCTION of a temporary waterstop by artificially freezing the soil 

surrounding an excavation site is a process that has been used for over a century, not 

always with success and usually as a last resort when more conventional methods had 

failed. The method may be costly and is time-consuming. Until recent years far too 

little engineering design has been used, but nowadays a specialist in frozen-soil 

engineering, given the site information he needs, can design a freezing system with 

confidence. However, every job needs care in installation and operation and cannot be 

left to a general contractor without expert help. A favorable site for artificial freezing is 

where the water table is high, the soil is, e.g., a running sand, and the water table 

cannot be drawn down because of possible damage to existing structures of water (in 

a coarser granular material). The freezing technique may be the best way to control 

water in some excavations, e.g., deep shafts. 

 

12.1.2 FROZEN SOIL NOT ONLY is an effective water barrier but also can serve as 

an excellent cofferdam. An example is the frozen cofferdam for an open excavation 

220 feet in diameter and 100 feet deep in rubbishy fill, sands, silts, and decomposed 

rock. A frozen curtain wall 4000 feet long and 65 feet deep has been successfully 

made but only after some difficult problems had been solved. Mine shafts 18 feet in 

diameter and 2000 feet deep have been excavated in artificially frozen soils and rocks 

where no other method could be used. Any soil or fractured rock can be frozen below 

the water table to form a watertight curtain provided the freeze-pipes can be installed, 

but accurate site data are essential for satisfactory design and operation. 

 

12.2 DESIGN. As with the design of any system for sub surface water control, a 

thorough site study must first be made. Moving water is the factor most likely to cause 

failure; a simple sounding-well or piezometer layout (or other means) must be used to 

check this. If the water moves across the excavation at more than about 4 feet per 
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day, the designer must include extra provisions to reduce the velocity, or a curtain wall 

may never close. If windows show up in the frozen curtain wall, flooding the excavation 

and refreezing with added freeze-pipes are nearly always necessary. A knowledge of 

the creep properties of the frozen soils may be needed; if the frozen soil is used as a 

cofferdam or earth retaining structure, such can be determined from laboratory tests. 

Thermal properties of the soils can usually be reliably estimated from published data, 

using dry unit weight and water content. 

 

12.3 OPERATION. The ground is frozen by closed-end, steel freeze-pipes (usually 

vertical, but they can be driven, placed, or jacked at any angle) from 4 to 6 inches in 

diameter, spaced from 3 to 5 feet in one or more rows to an impervious stratum. If 

there is no impervious stratum within reach, the soil may be completely frozen as a 

block in which the excavation is made, or an impervious stratum may be made 

artificially. In one project, a horizontal disk about 200 feet across and 24 feet thick was 

frozen at a minimum depth of 150 feet. Then, a cylindrical cofferdam 140 feet in 

diameter was frozen down to the disk, and the enclosed soil was excavated without 

any water problem. 

 

(1) Coaxial with each freeze-pipe is a 1½ to 2-inch steel, or plastic, supply pipe 

delivering a chilled liquid (coolant) to the bottom of the closed freeze pipe. The coolant 

flows slowly up the annulus between the pipes, pulls heat from the ground, and 

progressively freezes the soil. After a week or two, the separate cylinders of frozen soil 

join to form the barrier, which gradually thickens to the designed amount, generally at 

least 4 feet (walls of 24-foot thickness with two rows of freeze-pipes have been frozen 

in large and deep excavations in soft organic silts). The total freeze-time varies from 3 

to 4 weeks to 6 months or more but is predictable with high accuracy, and by 

instrumentation and observation the engineer has good control. Sands of low water 

content freeze fastest; fine-grained soils of high water content take more time and total 

energy, although the refrigeration horsepower required may be greater than for sands. 
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(2) The coolant is commonly a chloride brine at zero to -20 degrees Fahrenheit, but 

lower temperatures are preferable for saving time, reducing the amount of heat to be 

extracted, and minimizing frost heave effects (which must be studied beforehand). In 

recent years, liquid propane at -45°F has been used in large projects, and for small 

volumes of soil, liquid nitrogen that was allowed to waste has been used. (These 

cryogenic liquids demand special care-they are dangerous.) Coolant circulation is by 

headers, commonly 8-inch pipes, connected to a heat-exchanger at the refrigeration 

plant using freon (in a modern plant) as the refrigerant. The refrigeration equipment is 

usually rented for the job. A typical plant requires from 50 horsepower and up; 1000 

horsepower or more has sometimes been used. Headers should be insulated and are 

recoverable. Freeze-pipes may be withdrawn but are often wasted in construction; 

they are sometimes used for thawing the soil back to normal, in which case they could 

be pulled afterward. 

 

12.4 IMPORTANT CONSIDERATIONS. The following items must be considered when 

the freezing technique is to be used: 

 

(1) Water movement in soil. 

 

(2) Location of freeze-pipes. (The spacing of freeze-pipes should not exceed the 

designed amount by more than 1 foot anywhere along the freeze wall.) 

 

(3) Wall closure. (Freeze-pipes must be accurately located, and the temperature of the 

soil to be frozen carefully monitored with thermocouples to ensure 100 percent closure 

of the wall. Relief wells located at the center of a shaft may also be used to check the 

progress of freezing. By periodically pumping these wells, the effectiveness of the ice 

wall in sealing off seepage flow can be determined.) 

 

(4) Frost-heave effects-deformations and pressures. (Relief wells may be used to 

relieve pressures caused by expansion of frozen soil.) 
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(5) Temperature effects on buried utilities. 

 

(6) Insulation of aboveground piping. 

 

(7) Control of surface water to prevent flow to thefreezing region. 

 

(8) Coolant and ground temperatures. (By monitoring coolant and soil temperatures, 

the efficiency of the freezing process can be improved.) 

 

(9) Scheduling of operations to minimize lost time when freezing has been completed. 

 

(10) Standby plant. (Interruption of coolant circulation may be serious. A standby plant 

with its own prime movers is desirable so as to prevent any thaw. A continuous 

advance of the freezing front is not necessary so that standby plant capacity is much 

less than that normally used.) 

 

  

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com                                     PDHonline Course C802                                 www.PDHonline.org 

 

©2015   J. Paul Guyer                                                                                                                           Page 62 of 64 

13. CONTROL OF SURFACE WATER. 

 

13.1 RUNOFF OF SURFACE WATER from areas surrounding the excavation should 

be prevented from entering the excavation by sloping the ground away from the 

excavation or by the construction of dikes around the top of the excavation. Ditches 

and dikes can be constructed on the slopes of an excavation to control the runoff of 

water and reduce surface erosion. Runoff into slope ditches can be removed by 

pumping from sumps installed in these ditches, or it can be carried in a pipe or lined 

ditch to a central sump in the bottom of the excavation where it can be pumped out. 

Dikes at the top of an excavation and on slopes should have at least 1 foot of 

freeboard above the maximum elevation of water to be impounded and a crown width 

of 3 to 5 feet with side slopes of 1V on 2-2.5H. 

 

13.2 IN DESIGNING A DEWATERING system, provision must be made for collecting 

and pumping out surface water flooded. Control of surface water within the diked area 

will not only prevent interruption of the dewatering operation, which might seriously 

impair the stability of the excavation, but also prevent damage to the construction 

operations and minimize interruption of work. Surface water may be controlled by 

dikes, ditches, sumps, and pumps; the excavation slope can be protected by seeding 

or covering with fabric or asphalt. Items to be considered in the selection and design of 

a surface water control system include the duration and season of construction, rainfall 

frequency and intensity, size of the area, and character of surface soils. 

 

13.3 THE MAGNITUDE OF THE rainstorm that should be used for design depends on 

the geographical location, risk associated with damage to construction or the 

dewatering system, and probability of occurrence during construction. The common 

frequency of occurrence used to design surface water control sumps and pumps is a 

once in 2-to 5-year rainfall. For critical projects, a frequency of occurrence of once in 

10 years may be advisable 

. 
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13.4 IMPOUNDING RUNOFF on excavation slopes is somewhat risky because any 

overtopping of the dike could result in overtopping of all dikes at lower elevations with 

resultant flooding of the excavation. 

 

13.5 AMPLE ALLOWANCE for silting of ditches should be made to ensure that 

adequate capacities are available throughout the duration of construction. The grades 

of ditches should be fairly flat to prevent erosion. Sumps should be designed that will 

minimize siltation and that can be readily cleaned. Water from sumps should not be 

pumped into the main dewatering system. 

 

13.6 THE PUMP AND STORAGE requirements for control of surface water within an 

excavation can be estimated in the following manner: 

 

Step 1. Select frequency of rainstorm for which pumps, ditches, and sumps are to be 

designed. 

Step 2. For selected frequency (e.g., once in 5 years), determine rainfall for 10-, 30-, 

and 60-minute rainstorms at project site. 

Step 3. Assuming instantaneous runoff, compute volume of runoff VR (for each 

assumed rainstorm) into the excavation or from the drainage area into the excavation 

from the equation: 

 

 

 

where 

c = coefficient of runoff 

R = rainfall for assumed rainstorm, inches 

A = area of excavation plus area of drainage into  excavation, acres 
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(The value of c depends on relative porosity, character, and slope of the surface of the 

drainage area. For impervious or saturated steep excavations, c values may be 

assumed to range from 0.8 to 1.0.) 

Step 4. Plot values of VR versus assumed duration of rainstorm. 

Step 5. Plot pumpage rate of pump to be installed assuming pump is started at onset 

of rain. 

 

13.7 THE REQUIRED DITCH and sump storage volume is the (maximum) difference 

between the accumulated runoff for the various assumed rainstorms and the amount 

of water that the sump pump (or pumps) will remove during the same elapsed period 

of rainfall. The capacity and layout of the ditches and sumps can be adjusted to 

produce the optimum design with respect to the number, capacity, and location of the 

sumps and pumps. 

 

13.8 CONVERSELY, the required capacity of the pumps for pumping surface runoff 

depends upon the volume of storage available in sumps, as well as the rate of runoff. 

For example, if no storage is available, it would be necessary to pump the runoff at the 

rate it enters the excavation to prevent flooding. This method usually is not practicable. 

In large excavations, sumps should be provided where practicable to reduce the 

required pumping capacity. The volume of sumps and their effect on pump size can be 

determined graphically or can be estimated approximately from the following equation:  
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