
PDHonline Course E378 (4 PDH)

Digital Logic Systems Volume II -
Fundamental Logic Circuits

2020

Instructor: Lee Layton, PE

PDH Online | PDH Center
5272 Meadow Estates Drive

Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

An Approved Continuing Education Provider

http://www.PDHonline.com

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 2 of 37

DDiiggiittaall LLooggiicc CCiirrccuuiittss

VVoolluummee IIII

FFuunnddaammeennttaall LLooggiicc CCiirrccuuiittss

Lee Layton, P.E

Table of Contents

Section Page

 Introduction ………………………………………………. 3

 Chapter 1, Computer Logic ……………………………… 4

 Chapter 2, Basic Logic Circuits …………………………. 9

 Chapter 3, Variations of Fundamental Gates ……………. 23

 Chapter 4, Logic Gates in Combinations ………………… 28

 Chapter 5, Boolean Algebra ……………………………… 32

 Summary …………………………………………………. 37

This series of courses are based on the Navy Electricity and Electronics Training Series (NEETS)

section on Logic systems. The NEETS material has been reformatted for readability and ease of use as a

continuing education course. The NEETS series is produced by the Naval Education and Training

Professional Development and Technology Center.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 3 of 37

Introduction

In the first course in this series, Digital Logic Circuits, Volume I, Introduction to Logic, we

learned that the two digits of the binary number system can be represented by the state or

condition of electrical or electronic devices. A binary 1 can be represented by a switch that is

closed, a lamp that is lit, or a transistor that is conducting.

Conversely, a binary 0 would be represented by the same

devices in the opposite state: the switch open, the lamp off,

or the transistor in cut-off.

In this, the second course in the series, we will study the

four basic logic gates that make up the foundation for

digital equipment. We will see the types of logic that are

used in equipment to accomplish the desired results.

This course includes an introduction to Boolean algebra, the logic mathematics system used with

digital equipment. Certain Boolean expressions are used in explanation of the basic logic gates,

and their expressions will be used as each logic gate is introduced.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 4 of 37

Chapter 1

Computer Logic

Logic is defined as the science of reasoning. In other words, it is the development of a reasonable

or logical conclusion based on known information.

Consider the following example: If it is true that all non-penny, US coins are silver and the

Nickel is a coin, then you would reach the logical conclusion that the Nickel is silver. To reach a

logical conclusion, you must assume the qualifying statement is a condition of truth. For each

statement there is also a corresponding false condition. The statement "A Nickel is a US coin" is

true; therefore, the statement "A Nickel is not a US coin" is false. There are no in-between

conditions.

Computers operate on the principle of logic and use the TRUE and FALSE logic conditions of a

logical statement to make a programmed decision.

The conditions of a statement can be represented by symbols, called variables; for instance, the

statement "Today is Tuesday" might be represented by the symbol T. If today actually is

Tuesday, then T is TRUE. If today is not Tuesday, then T is FALSE. As we can see, a statement

has two conditions. In computers, these two conditions are represented by electronic circuits

operating in two logic states. These logic states are 0 (zero) and 1 (one). Respectively, 0 and 1

represent the FALSE and TRUE conditions of a statement.

When the TRUE and FALSE conditions are converted to electrical signals, they are referred to as

logic levels called HIGH and LOW. The 1 state might be represented by the presence of an

electrical signal (HIGH), while the 0 state might be represented by the absence of an electrical

signal (LOW).

If the statement "Today is Tuesday" is FALSE, then the

statement "Today is NOT Tuesday" must be TRUE. This is

called the complement of the original statement. In the case

of computer math, complement is defined as the opposite or

negative form of the original statement or variable. If today

were Tuesday, then the statement "Today is not Tuesday"

would be FALSE. The complement is shown by placing a

bar, or vinculum, over the statement symbol (in this case, T).

This variable is spoken as NOT T. Table 1 shows this concept and the relationship with logic

states and logic levels.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 5 of 37

Table 1

Relationship of Digital Logic and Terms

Statement Symbol Condition Logic State Logic Level

Example 1: Assume today is Tuesday

Original

Today is Tuesday
T True 1 High

Complement:

Today is Not Tuesday
T False 0 Low

Example 2: Assume today is not Tuesday

Original:

Today is Tuesday
T False 0 Low

Complement:

Today is Not Tuesday
T True 1 High

In some cases, more than one variable is used in a single expression. For example, the expression

ABCD is spoken "A AND B AND NOT C AND D."

Positive and Negative Logic

To this point, we have been dealing with one type of logic polarity, positive. Let’s further define

logic polarity and expand to cover in more detail the differences between positive and negative

logic.

Logic polarity is the type of voltage used to represent the logic 1 state of a statement. We have

determined that the two logic states can be represented by electrical signals. Any two distinct

voltages may be used. For instance, a positive voltage can represent the 1 state, and a negative

voltage can represent the 0 state. The opposite is also true.

Logic circuits are generally divided into two broad classes according to their polarity - positive

logic and negative logic. The voltage levels used and a statement indicating the use of positive or

negative logic will usually be specified on logic diagrams supplied by manufacturers.

In practice, many variations of logic polarity are used; for example, from a high-positive to a low

positive voltage, or from positive to ground; or from a high-negative to a low-negative voltage,

or from negative to ground. A brief discussion of the two general classes of logic polarity is

presented in the following paragraphs.

Positive Logic

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 6 of 37

Positive logic is defined as follows: If the signal that activates the circuit (the 1 state) has a

voltage level that is more positive than the 0 state, then the logic polarity is considered to be

positive. Table 2 shows the manner in which positive logic may be used.

Table 2

Example of Positive Logic

Example 1

Active signal – True, 1, High = +10 volts

Complement – False, 0, Low = 0 volts

Example 2

Active signal – True, 1, High = 0 volts

Complement – False, 0, Low = -10 volts

As we can see, in positive logic the 1 state is at a more positive voltage level than the 0 state.

Negative Logic

As you might suspect, negative logic is the opposite of positive logic and is defined as follows: If

the signal that activates the circuit (the 1 state) has a voltage level that is more negative than the

0 state, then the logic polarity is considered to be negative. Table 3 shows the manner in which

negative logic may be used.

Table 3

Examples of Negative Logic

Example 1

Active signal – True, 1, High = +5 volts

Complement – False, 0, Low = +10 volts

Example 2

Active signal – True, 1, High = -10 volts

Complement – False, 0, Low = -5 volts

The logic level LOW now represents the 1-state. This is because the 1-state voltage is more

negative than the 0-state.

In the examples shown for negative logic, you notice that the voltage for the logic 1 state is more

negative with respect to the logic 0-state voltage. This holds true in example 1 where both

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 7 of 37

voltages are positive. In this case, it may be easier for you to think of the TRUE condition as

being less positive than the FALSE condition. Either way, the end result is negative logic.

The use of positive or negative logic for digital equipment is a choice to be made by design

engineers. The difficulty for the technician in this area is limited to understanding the type of

logic being used and keeping it in mind when troubleshooting.

Note: Unless otherwise noted, the remainder of this course will deal only with positive logic.

Logic Inputs and Outputs

As you study logic circuits, you will see a variety of symbols used to represent the inputs and

outputs. The purpose of these symbols is to let you know what inputs are required for the desired

output.

If the symbol A is shown as an input to a logic device, then the logic level that represents A must

be HIGH to activate the logic device. That is, it must satisfy the input requirements of the logic

device before the logic device will issue the TRUE output.

Look at view A of Figure 1. The symbol X represents the input. As long as the switch is open,

the lamp is not lit. The open switch represents the logic 0 state of variable X.

Figure 1

Closing the switch (view B), represents the logic 1 state of X. Closing the switch completes the

circuit causing the lamp to light. The 1 state of X satisfied the input requirement and the circuit

therefore produced the desired output (logic HIGH); current was applied to the lamp causing it to

light.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 8 of 37

If you consider the lamp as the output of a logic device, then the same conditions exist. The

TRUE (1 state) output of the logic device is to have the lamp lit. If the lamp is not lit, then the

output of the logic device is FALSE (0 state).

As you study logic circuits, it is important that you remember the state (1 or 0) of the inputs and

outputs.

So far in this chapter, we have discussed the two conditions of logical statements, the logic states

representing these two conditions, logic levels and associated electrical signals and positive and

negative logic. We are now ready to proceed with individual logic device operations. These

make up the majority of computer circuitry.

As each of the logic devices are presented, a chart called a truth table will be used to illustrate all

possible input and corresponding output combinations. Truth Tables are particularly helpful in

understanding a logic device and for showing the differences between devices.

The logic operations you will study in chapter two are the AND, OR, NOT, NAND, and NOR.

The devices that accomplish these operations are called logic gates, or more informally, gates.

These gates are the foundation for all digital equipment. They are the "decision-making" circuits

of computers and other types of digital equipment. By making decisions, we mean that certain

conditions must exist to produce the desired output.

In studying each gate, we will introduce various mathematical symbols known as Boolean

Algebra expressions. These expressions are nothing more than descriptions of the input

requirements necessary to activate the circuit and the resultant circuit output.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 9 of 37

Chapter 2

Basic Logic Gates

The basic building blocks of digital logic systems are the AND gate, OR gate, NOT gate, NAND

gate, and a NOR gate. In this chapter we will study each of these gates, looking at their output

signals and truth tables.

AND Gates

The AND gate is a logic circuit that requires all inputs to be TRUE at the same time in order for

the output to be TRUE.

The standard symbol for the AND gate is shown in Figure 2. Variations of this standard symbol

may be encountered. These variations become necessary to illustrate that an AND gate may have

more than one input.

Figure 2

If we apply two variables, A and B, to the inputs of the AND gate, then both A and B would

have to be TRUE at the same time to produce the desired TRUE output. . The symbol f

designates the output function. The Boolean expression for this operation is f = A*B or f = AB.

The asterisk, or lack of, indicates the AND function. The expression is spoken, "f = A AND B."

We can demonstrate the operation of the AND gate with a simple circuit that has two switches in

series as shown in Figure 3. You can see that both switches would have to be closed at the same

time to light the lamp (view A). Any other combination of switch positions (view B) would

result in an open circuit and the lamp would not light (logic 0).

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 10 of 37

Figure 3

Now look at Figure 4. Signal A is applied to one input of the AND gate and signal B to the other.

At time T0, both inputs are LOW (logic 0) and f is LOW. At T1, A goes HIGH (logic 1); B

remains LOW; and as a result, f remains LOW. At T2, A goes LOW and B goes HIGH; f,

however, is still LOW, because the proper input conditions have not been satisfied (A and B both

HIGH at the same time). At T4, both A and B are HIGH. As a result, f is HIGH. The input

requirements have been satisfied, so the output is HIGH (logic 1).

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 11 of 37

Figure 4

Now let’s refer to Figure 5. As you can see, a Truth Table and a Table of Combinations are

shown. The latter is a deviation of the Truth Table. It uses the HIGH and LOW logic levels to

depict the gate’s inputs and resultant output combinations rather than the 1 and 0 logic states. By

comparing the inputs and outputs of the two tables, you see how one can easily be converted to

the other (remember, 1 = HIGH and 0 = LOW). The Table of Combinations is shown here only

to familiarize you with its existence; it will not be seen again in this course. As we mentioned

earlier, the Truth Table is a chart that shows all possible combinations of inputs and the resulting

outputs. Compare the AND gate Truth Table (Figure 5) with the input signals shown in Figure 4.

Figure 5

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 12 of 37

Truth Table

A B F

0 0 0

0 1 0

1 0 0

1 1 1

The first combination (A = 0, B = 0) corresponds to T0 in Figure 4; the second to T1; the third to

T2; and the last to T4. When constructing a Truth Table, you must include all possible

combinations of the inputs, including the all 0’s combination.

A Truth Table representing an AND gate with three inputs (X, Y, and Z) is shown below.

Remember that the two-input AND gate has four possible combinations, with only one of those

combinations providing a HIGH output. An AND gate with three inputs has eight possible

combinations, again with only one combination providing a HIGH output. Make sure you

include all possible combinations. To check if you have all combinations, raise 2 to the power

equal to the number of input variables. This will give you the total number of possible

combinations. For example: With inputs AB, the combinations are 2
2
, or 4 combinations. With

inputs XYZ, the combinations are 2
3
, or 8 combinations.

Truth Table

X Y Z f

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

f = XYZ

As with all AND gates, all the inputs must be HIGH at the same time to produce a HIGH output.

Don’t be confused if the complement of a variable is used as an input. When a complement is

indicated as an input to an AND gate, it must also be HIGH to satisfy the input requirements of

the gate. The Boolean expression for the output is formulated based on the TRUE inputs that

give a TRUE output. Here is an adage that might help you better understand the AND gate:

In order to produce a 1 output, all the inputs must be 1. If any or all of the

inputs is/are 0, then the output will be 0.

Table of Combinations

A B f

L L L

L H L

H L L

H H H

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 13 of 37

Referring to the following examples should help you cement this concept in your mind.

Remember, the inputs, whether the original variable or the complement must be high in order for

the output to be high. The three examples given are all AND gates with two inputs. Keep in mind

the Boolean expression for the output is the result of all the inputs being HIGH.

You will soon be able to recognize the Truth Table for the other types of logic gates without

having to look at the logic symbol.

OR Gates

The OR gate differs from the AND gate in that only ONE input has to be HIGH to produce a

HIGH output. An easy way to remember the OR gate is that any HIGH input will yield a HIGH

output.

Figure 6 shows the standard symbol for the OR gate. The number of inputs will vary according

to the needs of the designer.

A B f

0 0 0

0 1 0

1 0 0

1 1 1

f = AB

A B f

0 0 0

0 1 0

1 0 0

1 1 1

f = AB

A B f

0 0 0

0 1 0

1 0 0

1 1 1

f = A B

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 14 of 37

Figure 6

The OR gate may also be represented by a simple circuit as shown in Figure 7. In the OR gate,

two switches are placed in parallel. If either or both of the switches are closed (view A), the lamp

will light. The only time the lamp will not be lit is when both switches are open (view B).

Figure 7

Let’s assume we are applying two variables, X and Y, to the inputs of an OR gate. For the circuit

to produce a HIGH output, either variable X, variable Y, or both must be HIGH. The Boolean

expression for this operation is f = X+Y and is spoken "f equals X OR Y." The plus sign

indicates the OR function and should not be confused with addition.

Look at Figure 8. At time T0, both X and Y are LOW and f is LOW. At T1, X goes HIGH

producing a HIGH output. At T2 when both inputs go LOW, f goes LOW. When Y goes HIGH

at T3, f also goes HIGH and remains HIGH until both inputs are again LOW. At T5, both X and

Y go HIGH causing f to go HIGH.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 15 of 37

Figure 8

Using the inputs X and Y, let’s construct a Truth Table for the OR gate. We can see from the

discussion of Figure 8 that there are four combinations of inputs. List each of these combinations

of inputs and the respective outputs and you have the Truth Table for the OR gate.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 16 of 37

Truth Table

X Y F

0 0 0

0 1 1

1 0 1

1 1 1

f = X + Y

When writing or stating the Boolean expression for an OR gate with more than two inputs,

simply place the OR sign (+) between each input and read or state the sign as OR. For example,

the Boolean expression for an OR gate with the inputs of A, B, C, and D would be:

f = A+B+C+D

This expression is spoken "f equals A OR B OR C OR D."

We can substitute the complements for the original statements as we did with the AND gate or

use negative logic; but for an output from an OR gate, at least one of the inputs must be TRUE.

Inverters

The INVERTER, often referred to as a NOT gate, is a logic device that has an output opposite of

the input. It is sometimes called a negator. It may be used alone or in combination with other

logic devices to fulfill equipment requirements.

When an inverter is used alone, it is represented by the symbol shown in Figure 9 (view A). It

will more often be seen in conjunction with the symbol for an amplifier (view B). Symbols for

inverters used in combination with other devices will be shown later in the chapter.

Figure 9

Let’s go back to the statement "Today is Tuesday." We stated that T represents the TRUE state.

If we apply T to the input of the inverter as shown in Figure 10, then the output will be the

opposite of the input. The output, in this case, is T. At times T0 through T2, T is LOW.

Consequently, the output (T) is HIGH. At T2, T goes HIGH and as a result T goes LOW. T

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 17 of 37

remains LOW as long as T is HIGH and vice versa. The Boolean expression for the output of

this gate is f = T.

Figure 10

You will recall that T is the complement of T. The Truth Table for an inverter is shown below.

Truth Table

T F

0 1

1 0

The output of an inverter will be the complement of the input. The following examples show

various inputs to inverters and the resulting outputs:

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 18 of 37

The vinculum, or NOT sign, is placed over the entire output or removed from the output,

depending on the input. If we applied ABC to an inverter, the output would be ABC . And if we

ran that output through another inverter, the output would be ABC.

NAND Gates

The NAND gate is another logic device commonly found in digital equipment. This gate is

simply an AND gate with an inverter (NOT gate) at the output.

The logic symbol for the NAND gate is shown in Figure 11.

Figure 11

The NAND gate can have two or more inputs. The output will be LOW only when all the inputs

are HIGH. Conversely, the output will be HIGH when any or all of the inputs are LOW. The

NAND gate performs two functions, AND and NOT. Separating the NAND symbol to show

these two functions would reveal the equivalent circuits depicted in Figure 12. This should help

you better understand how the NAND gate functions.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 19 of 37

Figure 12

Inputs X and Y are applied to the AND gate. If either X or Y or both are LOW (view A), then the

output of the AND gate is LOW. A LOW (logic 0) on the input of the inverter results in a HIGH

(logic 1) output. When both X and Y are HIGH (view B), the output of the AND gate is HIGH;

thus the output of the inverter is LOW. The Boolean expression for the output of a NAND gate

with these inputs is f = XY. The expression is spoken "X AND Y quantity NOT." The output of

any NAND gate is the negation of the input. For example, if our inputs are X and Y, the output

will be XY .

Now, let’s observe the logic level inputs and corresponding outputs as shown in Figure 13. At

time T0, X and Y are both LOW. The output is HIGH; the opposite of an AND gate with the

same inputs. At T1, X goes HIGH and Y remains LOW. As a result, the output remains HIGH.

At T2, X goes LOW and Y goes HIGH. Again, the output remains HIGH. When both X and Y

are HIGH at T4, the output goes LOW.

The output will remain LOW only as long as both X and Y are HIGH.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 20 of 37

Figure 13

The Truth Table for a NAND gate with X and Y as inputs is shown below.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 21 of 37

Truth Table

X Y F

0 0 1

0 1 1

1 0 1

1 1 0

f = XY

NOR Gates

As we might expect, the NOR gate is an OR gate with an inverter on the output.

The standard logic symbol for this gate is shown in Figure 14. More than just the two inputs may

be shown.

Figure 14

The NOR gate will have a HIGH output only when all the inputs are LOW. When broken down,

the two functions performed by the NOR gate can be represented by the equivalent circuit

depicted in Figure 15. When both inputs to the OR gate are LOW, the output is LOW. A LOW

applied to an inverter gives a HIGH output. If either or both of the inputs to the OR gate are

HIGH, the output will be HIGH. When this HIGH output is applied to the inverter, the resulting

output is LOW. The Boolean expression for the output of this NOR gate is f = K +L. The

expression is spoken, "K OR L quantity NOT."

Figure 15

The logic level inputs and corresponding outputs for a NOR gate are shown in Figure 16. At time

T0, both K and L are LOW; as a result, f is HIGH. At T1, K goes HIGH, L remains LOW, and f

goes LOW. At T2, K goes LOW, L goes HIGH, and the output remains LOW. The output goes

HIGH again at T3 when both inputs are LOW. At T4 when both inputs are HIGH, the output

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 22 of 37

goes LOW and remains LOW until T5 when both inputs go LOW. Remember the output is just

opposite of what it would be for an OR gate.

Figure 16

The Truth Table for a NOR gate with K and L as inputs is shown below.

Truth Table

K L f

0 0 1

0 1 0

1 0 0

1 1 0

f = K + L

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 23 of 37

Chapter 3

Variations of Fundamental Gates

Now that we are familiar with fundamental logic gates, let’s look at some variations of these

gates that we may encounter.

Up to now we have seen inverters used alone or on the output of

AND and OR gates. Inverters may also be used on one or more of

the inputs to the logic gates. Take a look at the examples as

discussed in the following paragraphs.

AND/NAND Gate Variations

If we place an inverter on one input of a two-input AND gate, the

output will be quite different from that of the standard AND gate.

In Figure 17, we have placed an inverter on the A input. When A is

HIGH, the inverter makes it a LOW going into the AND gate. In order for the output to be

HIGH, A would have to be LOW while B is HIGH, as shown in the Truth Table. If the inverter

were on the B input, the output expression would then be f = AB.

Figure 17

Truth Table

A B f

0 0 0

0 1 1

1 0 0

1 1 0

f = A B

Now let’s compare a NAND gate to an AND gate with an inverter on each input. Figure 18

shows these gates and the associated Truth Tables. With the NAND gate (view A), the output is

HIGH when either or both inputs is/are LOW. The AND gate with inverters on each input (view

B), produces a HIGH output only when both inputs are LOW. This comparison also points out

the differences between the expressions f = AB (A AND B quantity NOT) and f =A B (NOT A

AND NOT B).

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 24 of 37

Now, look over the Truth Tables for Figures 17, 18, and 19; look at how the outputs vary with

inverters in different positions.

 Figure 18

A B f

0 0 1

0 1 1

1 0 1

1 1 0

Figure 19

A B F

0 0 1

0 1 1

1 0 0

1 1 1

f = A B

OR/NOR Gate Variations

The outputs of OR and NOR gates may also be changed with the use of inverters.

An OR gate with one input inverted is shown in Figure 20. The output of this OR gate requires

that A be LOW, B be HIGH, or both of these conditions existing at the same time in order to

have a HIGH output. Since the A input is inverted, it must be LOW if B is LOW in order to

produce a HIGH output.

Therefore the output is f = A +B.

A B f

0 0 1

0 1 0

1 0 0

1 1 0

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 25 of 37

Figure 20

Truth Table

A B f

0 0 1

0 1 1

1 0 0

1 1 1

f = A + B

Figure 21compares a NOR gate (view A), to an OR gate with inverters on both inputs (view B),

and shows the respective Truth Tables. The NOR gate will produce a HIGH output only when

both inputs are LOW. The OR gate with inverted inputs produces a HIGH output with all input

combinations EXCEPT when both inputs are HIGH. This Figure also illustrates the differences

between the expressions f = A +B (A OR B quantity NOT) and f = A + B (NOT A OR NOT B).

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 26 of 37

Figure 21

A B f

0 0 1

0 1 0

1 0 0

1 1 0

f = A + B

As with the NAND gate, one or more inputs to NOR gates may be inverted. Figure 22 shows the

result of inverting a NOR gate input. In this case, because of the inversion of the B input and the

inversion of the output, the only time this gate will produce a HIGH output is when A is LOW

and B is HIGH. The output Boolean expression for this gate is f = A + B, spoken “A OR NOT B

quantity NOT.”

Figure 22

A B f

0 0 0

0 1 1

1 0 0

1 1 0

f = A + B

Table 4 illustrates AND, NOR, NAND, and OR gate combinations that produce the same output.

We can see by the table that there is more than one way to achieve a desired output. Although the

gates have only two inputs, the table can be extended to more than two inputs.

A B F

0 0 1

0 1 1

1 0 1

1 1 0

f = A + B

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 27 of 37

Table 4

AND, NOR, NAND, and OR Gate Combinations

 AND Gates OR Gates A B f

1

0

0

1

1

0

1

0

1

0

0

0

1

2

0

0

1

1

0

1

0

1

0

1

0

0

3

0

0

1

1

0

1

0

1

0

0

1

0

4

0

0

1

1

0

1

0

1

1

0

0

0

 NAND Gates OR Gates

5

0

0

1

1

0

1

0

1

0

1

1

1

6

0

0

1

1

0

1

0

1

1

1

0

1

7

0

0

1

1

0

1

0

1

1

0

1

1

8

0

0

1

1

0

1

0

1

1

1

1

0

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 28 of 37

Chapter 4

Logic Gates in Combination

When you look at logic circuit diagrams for digital equipment, you are not going to see just a

single gate, but many combinations of gates. At first it may seem confusing and complex. If you

interpret one gate at a time, you can work your way through any network. In this section, we will

analyze several combinations of gates.

Figure 23 (view A) shows a simple combination of AND gates. The outputs of gates 1 and 2 are

the inputs to gate 3. We already know that both inputs to an AND gate must be HIGH at the

same time in order to produce a HIGH output.

Figure 23

The output Boolean expression of gate 1 is RS, and the output expression of gate 2 is TV. These

two output expressions become the inputs to gate 3. Remember, the output Boolean expression is

the result of the inputs, in this case (RS)(TV); spoken "quantity R AND S AND quantity T AND

V."

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 29 of 37

In view B we have changed gate 3 to an OR gate. The outputs of gates 1 and 2 remain the same

but the output of gate 3 changes as we would expect. The output of gate 3 is now (RS)+(TV);

spoken "quantity R AND S OR quantity T AND V."

In Figure 24 (view A), the outputs of two OR gates are being applied as the input to third OR

gate. The output for gate 1 is R+S, and the output for gate 2 is T+V. With these inputs, the

output expression of gate 3 is (R+S)+(T+V).

Figure 24

In view B, gate 3 has been changed to an AND gate. The outputs of gates 1 and 2 do not change,

but the output expression of gate 3 does. In this case, the gate 3 output expression is (R + S)(T +

V). This expression is spoken, "quantity R OR S AND quantity T OR V." The parentheses are

used to separate the input terms and to indicate the AND function. Without the parentheses the

output expression would read R + ST + V, which is representative of the circuit in view C. As we

can see, this is not the same circuit as the one depicted in view B. It is very important that the

Boolean expressions be written and spoken correctly.

The Truth Table for the output expression of gate 3 (view B) will help you better understand the

output. When studying this Truth Table, notice that the only time f is HIGH (logic 1) is when

either or both R and S AND either or both T and V are HIGH (logic 1).

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 30 of 37

Truth Table

R S T V f

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

f = (R+S)(T+V)

Now let’s determine the output expression for the NOR gate in Figure 25. First write the outputs

of gates 1, 2, and 3:

Figure 25

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 31 of 37

Since all three outputs are applied to gate 4, we may proceed as we would for any NOR gate. We

separate each input to gate 4 with an OR sign (+) and then place a vinculum over the entire

expression. The output expression of gate 4 is:

When trying to determine the outputs of logic gates in combination, take them one gate at a time!

(AB) (GH) (X+Z) f

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

0

0

0

0

0

0

0

f = (AB) + (GH) + (X+Z)

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 32 of 37

Chapter 5

Boolean Algebra

Boolean logic, or Boolean algebra as it is called today, was developed by an English

mathematician, George Boole, in the 19th century. He based his concepts on the assumption that

most quantities have two possible conditions - TRUE and FALSE. This is the same theory you
were introduced to at the beginning of this course.

Throughout our discussions of fundamental logic gates, we

have mentioned Boolean expressions. A Boolean

expression is nothing more than a description of the input

conditions necessary to get the desired output. These

expressions are based on Boole’s laws and theorems.

Boolean algebra is used primarily by design engineers.

Using this system, they are able to arrange logic gates to

accomplish desired tasks. Boolean algebra also enables the engineers to achieve the desired

output by using the fewest number of logic gates. Since space, weight, and cost are important

factors in the design of equipment, you would usually want to use as few parts as possible.

There are several Boolean laws and theorems that can be used to simplify the analysis of logic

circuits. Each of the laws and theorems are explained below.

 Laws and Theorems

Each of the laws and theorems of Boolean algebra, along with a simple explanation, is listed

below.

LAW OF IDENTITY - a term that is TRUE in one part of an expression will be TRUE in all

parts of the expression (A = A or A = A).

COMMUTATIVE LAW - the order in which terms are written does not affect their value (AB =

BA, A+B = B+A).

ASSOCIATIVE LAW - a simple equality statement A(BC) = ABC or A+(B+C) = A+B+C.

IDEMPOTENT LAW - a term ANDed with itself or ORed with itself is equal to that term (AA =

A, A+A = A).

DOUBLE NEGATIVE LAW - a term that is inverted twice is equal to the term A = A.

COMPLEMENTARY LAW - a term ANDed with its complement equals 0, and a term O Red

with its complement equals 1 (AA = 0, A+A = 1).

LAW OF INTERSECTION - a term ANDed with 1 equals that term and a term ANDed with 0

equals 0 (A*1 = A, A*0 = 0).

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 33 of 37

LAW OF UNION - a term ORed with 1 equals 1 and a term ORed with 0 equals that term (A+1

= 1, A+0 = A).

DeMORGAN’S THEOREM - this theorem consists of two parts: (1) AB = A + B and (2)

A +B = A * B (Look at the fourth and eighth sets of gates in table 4).

DISTRIBUTIVE LAW - (1) a term (A) ANDed with an parenthetical expression (B+C) equals

that term ANDed with each term within the parenthesis: A* (B+C) = AB+AC; (2) a term (A)

ORed with a parenthetical expression (B ·C) equals that term ORed with each term within the

parenthesis: A+(BC) = (A+B) * (A+C).

LAW OF ABSORPTION - this law is the result of the application of several other laws:

A*(A+B) = A or A+(AB) = A.

LAW OF COMMON IDENTITIES - the two statements A*(A +B) = AB and A+A B = A+B are

based on the complementary law.

Table 5 on the next page summarizes these laws and theorems.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 34 of 37

Table 5

Boolean Laws and Theorems

1. Law of Identity
A = A

A = A

2. Commutative Law
A * B = B * A

A + B = B + A

3. Associative Law
A * (B * C) = A * B * C

A + (B + C) = A + B + C

4. Idempotent Law
A * A = A

A + A = A

5. Double Negative Law

A = A

6. Complementary Law
A * A = 0

A + A = 1

7. Law of Intersection
A * 1 = A

A * 0 = 0

8. Law of Union
A + 1 = 1

A + 0 = A

9. DeMorgan’s Theorem
AB = A + B

A + B = A B

10. Distributive Law
A * (B + C) = (A * B) + (A * C)

A + (BC) = (A + B) * (A + C)

11. Law of Absorption
A * (A + B) = A

A + (AB) = A

12. Law of Common Identities
A * (A + B) = AB

A + (A B) = A + B

Figure 26 (view A), shows a rather complex series of gates. Through proper application of

Boolean algebra, the circuit can be simplified to the single OR gate shown in view B. Figure 27

shows the simplification process and the Boolean laws and theorem used to accomplish it.

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 35 of 37

Figure 26

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 36 of 37

Figure 27

www.PDHcenter.com PDHonline Course E378 www.PDHonline.org

© Lee Layton. Page 37 of 37

SUMMARY

This course has presented information on logic, fundamental logic gates, and Boolean laws and

theorems. The information that follows summarizes the important points of this chapter.

Logic is the development of a logical conclusion based on known information.

Computers operate on the assumption that statements have two conditions - TRUE and FALSE.

Positive logic is defined as follows: if the signal that activates the circuit (the 1 state) has a

voltage level that is more positive than the 0 state, then the logic polarity is considered to be

positive.

Negative logic is defined as follows: if the signal that activates the circuit (the 1 state) has a

voltage level that is more negative than the 0 state, then the logic polarity is considered to be

negative.

In digital logic (positive or negative), the true condition of a statement is represented by the logic

1 state and the false condition is represented by the logic 0 state.

Logic levels high and low represent the voltage levels of the two logic states. Logic level HIGH

represents the more positive voltage while logic level LOW represents the less positive (more

negative) voltage. In positive logic, the high level corresponds to the true or 1 state and the low

level corresponds to the false or 0 state. In negative logic, the high level corresponds to the false

or 0 state and the low level corresponds to the true or 1 state.

A Boolean expression is a statement that represents the inputs and outputs of logic gates.

The AND gate requires all inputs to be high at the same time in order to produce a high output.

The OR gate requires one or both inputs to be high in order to produce a high output.

INVERTER (or NOT gate) is a logic gate used to complement the state of the input variable; that

is, a 1 becomes a 0 or a 0 becomes a 1. It may be used on any input or output of any gate to

obtain the desired result.

The NAND gate functions as an AND gate with an inverted output.

The NOR gate functions as an OR gate with an inverted output.

When deriving the output Boolean expression of a combination of gates, solve one gate at a time.

Boolean algebra is used primarily for the design and simplification of circuits.

+++

