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Open Channel Hydraulics II – Critical & Non-uniform Flow 

 
Harlan H. Bengtson, Ph.D., P.E. 

 
 

COURSE CONTENT 

 

1.      Introduction 

 

This course is intended to be taken after the course, H138, “Open Channel 

Hydraulics I – Uniform Flow.”  It will be assumed that anyone taking this course 

is familiar with the major classifications used for open channel flow (steady or 

unsteady state, laminar or turbulent flow, uniform or non-uniform flow, and 

critical, subcritical or supercritical flow) and with the use of the Manning 

equation and the parameters in that equation (e.g. hydraulic radius) for uniform 

open channel flow.  

 

In this course, the parameter called specific energy will be used to introduce the 

concepts of critical, subcritical, and supercritical flow.  Various calculations 

related to critical, subcritical and supercritical flow conditions will be presented.  

The hydraulic jump as an example of rapidly varied non-uniform flow will be 

discussed.  The thirteen possible types of gradually varied non-uniform flow 

surface profiles will be presented and discussed.  Also, the procedure and 

equations for step-wise calculation of gradually varied non-uniform surface 

profiles will be presented and illustrated with examples. 

 

 

2.      Specific Energy and Critical Flow in Open Channels 

 
 

 
 

        

         

         

   A discussion of specific energy in open channel 

   flow helps to shed some light on the concepts of  

   critical, subcritical and supercritical flow.  At any 

   cross-section  in  an  open  channel, the specific 

   energy, E, is defined as the sum of the kinetic energy 

     Specifically, Just what  per unit weight of the flowing liquid and potential 

      is SPECIFIC ENERGY ? energy relative to the bottom of the channel.  Thus:   
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    E  =  y  +  V
2
/2g     (1) 

 

Where: E  =  specific energy, ft-lb/lb 
 

  y  =  depth of flow above the bottom of the channel, ft 
 

  V  =  average liquid velocity (= Q/A), ft/sec 
 

  g  =  acceleration due to gravity  =  32.2 ft/sec
2
  

 

Another form of the equation with Q/A replacing V is: 

 

    E  =  y  +  Q
2
/2A

2
g     (2) 

 

In order to show the relationship of specific energy to depth, we will now 

consider a rectangular cross-section for the open channel, with bottom width, b. 

 

For this channel, A = yb,  substituting into equation (2), gives: 

 

   E  =  y  +  Q
2
/(2 y

2
b

2
g)     (3) 

 

This equation, for a rectangular channel, is often expressed in terms of the flow 

rate per unit channel width, q  (q  =  Q/b).  Substituting into equation (3) gives: 

 

   E  =  y  +  q
2
/(2 y

2
g)     (4) 

 

Using this equation, the specific energy can be plotted as a function of y, for a 

selected value of q.   The table and graph in Figure 1, below illustrate this 

procedure for q = 10 cfs/ft in a rectangular channel.  The values of E in the table 

were calculated from equation (4) for q = 10, and the indicated values for y.  The 

graph shows that specific energy has high values for large values of y and for 

small values of y.  This does, in fact, make sense.  For large values of y, the first 

term in equation (4) (potential energy) is large.  For small values of y with a fixed 

flow rate per unit channel width, the velocity of flow will become large and the 

second term in equation (4) (kinetic energy) is large.  At some intermediate  depth 

of flow the specific energy has a minimum value.  The value of y which gives a 

minimum specific energy is called the critical depth.  From the table and graph 

below, it can be seen that the critical depth is 1.5 ft to 2 significant figures 
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   Figure 1. Specific Energy vs Depth (Rect. channel, q = 10 cfs/ft) 
 

y, ft E, ft-lb/lb 

 

 
 

    

       

8 8.024      

6 6.043      

5 5.062      

4 4.097      

3 3.173      

2 2.388      

1.8 2.279      

1.6 2.207      

1.5 2.190      

1.4 2.192      

1.2 2.278      

1 2.553      

0.8 3.226      

0.6 4.913      

0.5 6.711      

0.4 10.105      

       

   
of accuracy.  An equation for the critical depth, which will be represented as yc ,  

can be derived, with a little application of calculus.  The value of y which will 

give a minimum or maximum value for E can be found by getting an expression 

for dE/dy from equation (4), setting dE/dy equal to zero, and solving for y.  This 

procedure yields the following equation: 

 
      yc  =  (q

2
/g)

1/3
     (5) 

 
Example #1:  Calculate the critical depth for a flow rate of 10 ft

3
/sec in a 

rectangular open channel. 

 
Solution:  Using equation (5):  yc  =  (10

2
/32.2)

1/3
  =  (3.1056)

1/3
  = 1.459 
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Note that this value is consistent with the value of 1.5 from the table below, but 

with more significant figures. 

 
Any flow condition with depth of flow less than critical depth ( y < yc ) will be 

represented by the lower leg of the graph above, and is called supercritical flow.  

Any flow condition with depth of flow greater than critical depth ( y > yc ) will be 

represented by the upper leg of the graph above, and is called subcritical flow.  

The flow condition with y = yc is called critical flow. 

 
i)  The Froude Number for Rectangular Channels 

 

The Froude Number, Fr, is a dimensionless parameter used for open channel 

flow.  For flow in a rectangular channel, it is defined as:  Fr  = V/(gy)
1/2

,  where 

V, y, and g are the average velocity, depth of flow, and acceleration due to 

gravity, as previously discussed. 

 

Substituting q  =  Q/b  =  VA/b  =  V(yb)/b  =  Vy, into equation (5), simplifying 

and rearranging the equation yields: 

 

  V
2
/gyc  =  1  or     Frc

2
  =  1      or     Frc  =  1 

 
In other words, the Froude number is equal to one at critical flow conditions.  

Extending this slightly.  The Froude number must be greater than one for 

supercritical flow and less than one for subcritical flow.  Summarizing: 

 

 Fr  <  1   for subcritical flow 
 

 Fr  =  1   for critical flow 
 

 Fr  >  1  for supercritical flow 

 
Example #2:  A rectangular open channel with bottom width = 1.5 ft, is carrying 

a flow rate of 9 cfs, with depth of flow = 1 ft.  A  cross-section of the channel is 

shown in the figure below.  Is this subcritical or supercritical flow? 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com                                    PDHonline Course H139                               www.PDHonline.org 

 

©2009 Harlan H. Bengtson                                                                                                         Page 6 of 22 

                                        
 

 

Solution:  There is sufficient information to calculate the Froude Number, as 

follows: 

  A  =  by  =  (1.5)(1) ft
2
  =  1.5 ft

2
 

 

  V  =  Q/A  =  9/1.5  =  6 ft/sec 
 

  Fr  =  V/(gy)
1/2

  =  (6)/[(32.2)(1)]
1/2

  =  1.06 

 

Since Fr > 1, this is supercritical flow.   

 
ii)  The Froude Number for Non-rectangular Channels 

 

The Froude Number for flow in a channel with non-rectangular cross-section is 

defined as Fr  = V/[g(A/B)]
1/2

,  where A is the cross-sectional area of flow and B 

is the surface width for the specified flow conditions.  A and B are shown in 

Figure 2, for a general, non-rectangular cross-section.  Note that A/B = y for a 

rectangular channel, so the definition, Fr  = V/[g(A/B)]
1/2

, is simply a more 

general definition for the Froude Number.  The same criteria given above apply 

for subcritical, supercritical and critical flow in non-rectangular channels. 
 

 

                           
 

 Figure 2.  A and B for Non-rectangular Cross-section 
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Example #3:  A trapezoidal open channel, with bottom width = 2 ft and side 

slope of horiz : vert = 3:1, is carrying a flow rate of 15 cfs, with depth of flow = 

1.5 ft.  Is this subcritical or supercritical flow?  See the diagram below. 

 

                                    

 
Solution:  There is sufficient information to calculate the Froude Number, as 

follows:  (recall from “Open Channel Hydraulics I”, that A  =  by + zy
2
). 

 

  A  =  by + zy
2
  =  (2)(1.5) + (3)(1.5

2
) ft

2
  =  9.75 ft

2
 

 

  V  =  Q/A  =  15/9.75  =  1.538 ft/sec 
 

B  =  b  +  2zy  =  2 + (2)(3)(1.5)  =  11 ft 
 

  Fr  = V/[g(A/B)]
1/2

 =  (1.538)/[(32.2)(9.75/11)]
1/2

  =  0.288 

 

Since Fr < 1, this is subcritical flow.  

 

iii)  Calculation of Critical Slope 
 

 

 
 

 The critical slope, Sc , is the slope that will give 

  critical flow conditions for a specified flow rate in 

  a channel of specified shape, size and Manning 

  roughness.  The critical slope can be calculated 

  from the Manning equation for critical flow 

  conditions:    

 A channel with CRITICAL      Q = (1.49/n)Ac(Rhc
2/3

)Sc
1/2                    (6) 

 SLOPE will carry water      

 at CRITICAL FLOW ? In this equation, Q and n will be specified, Sc is to 

I guess that makes sense! be calculated, and Ac & Rhc will be functions of yc, 
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along with channel shape and size parameters.  The critical depth, yc,  must be 

calculated first in order to get values for for Ac & Rhc .  Two examples will be 

done to illustrate this type of calculation, the first with a rectangular channel and 

the second with a triangular channel. 

 
Example #4:  Find the critical slope for a rectangular channel with bottom width 

of 3 ft, Manning roughness of 0.011, carrying a flow rate of 15 cfs. 
 
 

Solution:  First calculate the critical depth from:  yc  =  (q
2
/g)

1/3
   

 

Substituting values:   yc  =  ((15/3)
2
/32.2)

1/3
  =  0.9191 ft 

 
 Ac  =  byc  =  (3)(0.9191)  =  2.757 ft

2
   

  
 Pc  =  b + 2yc  =  3 + (2)(0.9191)  =  4.8382 ft 

 
 Rhc  =  Ac/Pc  =  2.757/4.8382 ft  =  0.5698 ft 

 
Substituting values into Eqn (6):    15 = (1.49/0.011)(2.757)(0.5698

2/3
)Sc

1/2   
 

Solving for Sc gives:  Sc  =   0.00342 

 
Example #5:  Find the critical slope for a triangular channel with side slopes of 

horiz : vert = 3:1, Manning roughness of 0.011, carrying a flow rate of 15 cfs. 
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Solution:  The critical depth (measured from the triangle vertex) can be 

calculated from the criterion that Fr  = V/[g(A/B)]
1/2

 = 1 for critical flow, or Frc  = 

Vc/[g(Ac/Bc)]
1/2

  =  1. 

 
 From the figure above:  Bc  =  2ycz  =  6yc 

 
 Ac  =   yc

2
z  =  3yc

2
   

 
 Vc  =  Q/Ac  =   15/(3yc

2
) 

 
Substituting expressions for  Vc ,Ac , & Bc into the equation for Fr and setting it 

equal to 1 gives: 

   (15/(3yc
2
))/[(32.2)(3yc

2
)/ 6yc)]

1/2
  =  1  

 
 Believe it or not, this simplifies to 1.246/ yc

5/2
  =  1 

 
 Solving:    yc  =  1.09 ft 

 
Now, proceeding as in Example #4:  

 

Ac  =  3yc
2
  =(3)(1.09)

2
  =  3.564 ft

2
   

  
 Pc  =  2[yc

2
(1 + z

2
)]

1/2
  =  2[(1.09

2
)(1 + 3

2
)]

1/2
    =  6.893 ft 

 
 Rhc  =  Ac/Pc  =  3.564/6.893 ft  =  0.51709 ft 

 
Substituting values into Eqn (6):    15 = (1.49/0.011)(3.564)(0.51709

2/3
)Sc

1/2   

 
Solving for Sc gives:  Sc  =   0.0023 

 
TERMINOLOGY:  A bottom slope less than the critical slope for a given channel 

is called a mild slope and a slope greater than critical is called a steep slope. 
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5.      Hydraulic Jump  (Rapidly Varied Flow) 
 

Whenever a supercritical flow occurs on a slope that   

cannot maintain a supercritical flow, the transition to  

sustainable subcritical flow conditions will be  

through a hydraulic jump.  A couple of examples of 

 physical situations, which give rise to a hydraulic  

jump, are shown in Figure 3 (Hydraulic Jump due to 

Transition from Steep to Mild Slope) and Figure 4  

(Hydraulic Jump due to Flow Under a Sluice Gate). 

There is no way to have a gradual transition from       Is a HYDRAULIC JUMP 

from supercritical to subcritical flow in an open            really used in 

channel.               a steeplechase ? 

 

 

Figure 5 shows the upstream (supercritical) parameters and the downstream 

(subcritical) parameters, which are often used in connection with a hydraulic 

jump.  These parameters are the supercritical velocity, V1, supercritical depth of 

flow, y1, subcritical velocity, V2, and subcritical depth of flow, y2. 
 

 

                                                       

 

               

     

   
      Figure 3.  Hydraulic Jump due to Transition from Steep to Mild Slope 
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     Figure 4.  Hydraulic Jump due to Flow Under a Sluice Gate 

 
 

                       

 
 Figure 5.  Upstream and Downstream Parameters for a Hydraulic Jump 

 
Through the use of the three conservation equations (the continuity equation, the 

energy equation and the momentum equation) the following equation can be 

derived, relating the upstream and downstream conditions for a hydraulic jump in 

a rectangular channel: 

 
  y2/y1  =  (1/2)[ -1 + (1 + 8Fr1

2
)

1/2
 ]      (7) 

 
 Where:   Fr1  = V1/(gy1)

1/2
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Example #6:  The flow rate under a sluice gate in a 10 ft wide rectangular 

channel is 50 cfs, with a 0.8 ft depth of flow.  If the channel slope is mild, will 

there be a hydraulic jump downstream of the sluice gate? 

 
Solution:  From the problem statement:  y = 0.8 ft and Q = 50 cfs.  Average 

velocity, V, can be calculated and then Fr can be calculated to determine whether 

this is subcritical or supercritical flow. 

 

 V  =  Q/A  =  Q/yb  =  50/(0.8)(10)  =  6.25 ft/sec 

 
 Fr  =  V/(gy)

1/2
  =  (6.25)/[(32.2)(0.8)]

1/2
  =  1.23 

 
Since Fr > 1, the described flow is supercritical.  Since the channel slope is 

mild, there will be a hydraulic jump to make the transition from 

supercritical to subcritical flow. 

 
Example #7:  What will be the depth of flow and average velocity in the 

subcritical flow following the hydraulic jump of Example #6? 

 
Solution:  Equation (7) can be used with Fr1 = 1.23 and y1 = 0.8.            Equation 

(7) becomes: 

 
 y2/0.8  =  (1/2)[ -1 + (1 + 8(1.23)

2
)

1/2
 ]   =  1.3099 

 

   y2  =   1.05 ft 

 
 V2  =  Q/A2  =  50/(10)(1.05)  =  4.76 ft/sec  =  V2   
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6.       Gradually Varied, Non-Uniform Open Channel Flow 

 
 

 
 

 Gradually varied flow refers to non-uniform flow in which the 

  depth of flow is changing smoothly and gradually.  This is in 

  contrast with the abrupt, turbulent transition from supercritical 

  to subcritical flow in a hydraulic jump, which is sometimes 

  called rapidly varied flow.     

        

  Classification of Gradually Varied Flow Surface Profiles 

  Are there really       

  13 ways to have Figure 6, on the next page shows the thirteen possible 

    GRADUALLY  gradually varied flow surface profiles with a commonly used 

  VARIED FLOW ? classification scheme.  There are five possible types of  

  channel bottom slope:    

 
i)  mild (M):    (S  <  Sc),   

 

ii)   Steep (S):     (S  >  Sc),  
  

iii)  critical  (C):    (S  =  Sc),   
 

iv)  horizontal  (H):    (S  =  0),  and 
 

v)  adverse  (A):    (upward slope).    
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     y > yo  &  y > yc y is between yo & yc     y < yo  &  y < yc 
    

       

 

 

  
 

   

      

  Mild Slope      

      

    S < Sc       

      

      
       

 

 

  
 

    

      

 Steep Slope      

      

    S > Sc       

      

      

       

 

 

  
 

    

      

Critical Slope      

      

     S = Sc       

      

      

       

 

 

  
 

    

      

 Horizontal      
      

 Channel      

      

    S = 0      

       

 

 

  
 

    

  Adverse      

    Slope      

      

 S = upward      

      

       

  

                       Figure 6.  The Possible Gradually Varied Flow Profiles 
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The relative values of depth of flow, y, normal depth, yo, and critical depth, yc, 

can be classified into three categories as follows:  

 

i) category 1:     y  >  yc  &  y  >  yo ; 
 

ii) category 2:     y is between  yc  &  yo ;     
  

iii) category 3:     y  <  yc  &  y  <  yo. 

 

For example, a non-uniform surface profile with a mild slope and   y  >  yo  >  yc   

is called an M1 profile, and a non-uniform surface profile with a steep slope and    

yo  <  y  <  yc  is called an S2 profile.  The entire classification and terminology is 

shown in Figure 6, on the previous page.   

 

Note that there is no possible surface profile H1 or A1, because neither a 

horizontal nor adverse slope can sustain uniform flow and hence neither 

has a normal depth. 

 

        
 

 Figure 7.  Physical Situations for M & S Non-Uniform Surface Profiles  
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Figure 7 shows physical situations which give rise to the six classifications 

of gradually varied flow surface profiles for mild and steep slopes. 

 
ii)  Stepwise Calculation of Non-uniform Flow Surface Profiles 
 

An important distinction between uniform flow and gradually varied non-uniform 

flow in open channels has to do with the relationship between the channel bottom 

slope and the slope of the liquid surface.  For uniform flow, these two slopes are 

equal (because the depth of flow is constant).  For gradually varied non-uniform 

flow, the depth of flow is changing, so the surface slope is not the same as the 

channel bottom slope.  Either the surface slope is greater than the bottom slope (if 

the depth of flow is increasing in the direction of flow), or the surface slope is less 

than the bottom slope (if the depth of flow is decreasing in the direction of flow).  

This is illustrated in Figure 8, below. 
 

 

       
 

         Figure 8.  Uniform Flow and Gradually Varied Non-uniform Flow 

 

 

                     
 
    

    Figure 9. Reach of Open Channel with Gradually Varied Non-uniform Flow 
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Figure 9, which shows a reach (longitudinal section) of open channel with 

gradually varied non-uniform flow, will be used to develop an equation to be used 

for stepwise calculation of the surface profile (depth of flow vs length in direction 

of flow) for such a flow.  The parameters shown in the diagram at the inlet and 

outlet ends of the channel reach are components of the Energy Equation as 

applied to the reach of channel.  These components are summarized here: 

 

 Potential energy per lb of flowing water in  =   y1 + SoL 

 

 Kinetic energy per lb of flowing water in  =  V1
2
/2g 

 

 Potential energy per lb of flowing water out  =   y2  

 

 Kinetic energy per lb of flowing water out  =  V2
2
/2g 

 

 Frictional head loss over length of flow L  =  hL  

 

The Energy Equation (First Law of Thermodynamics) applied to the reach of 

channel in Figure 9 can be stated as: 

 

Energy per lb of flowing water into reach  =  Energy per lb of flowing  

 

water out of reach  +  Frictional head loss over the reach of channel 

 

Substituting the parameters from above the Energy Equation becomes: 

 

y1 + SoL  +  V1
2
/2g  =  y2  +  V2

2
/2g  +  hL   (8) 

 

As can be seen in the diagram in Figure 9, the frictional head loss over the length 

of channel, L, is simply the decrease in elevation of the water surface.  This 

decrease in elevation can be expressed as the slope of the water surface times the 

length of the reach, or: 

 

   hL  =  SfL   

 

Substituting into equation (8) and solving for y1 -  y2, gives the following: 

 

y1 -  y2  =   (V2
2
  -  V1

2
)/2g  +  (Sf  -  So)L  (9) 
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Equation (9) can now be used to make a stepwise determination of the non-

uniform surface profile for a reach of channel such as that shown in Figure 9.  

The bottom slope, So, the length of the channel reach, L, and the flow rate through 

the reach of channel, Q, should be known.  Also, g is, of course, the known 

acceleration due to gravity, 32.2 ft/sec
2
.  If values can be determined for V1,  V2,  

&  Sf  (which of course they can), then the downstream depth of flow, y2, can be 

calculated for a specified upstream depth of flow, y1, and vice versa.  Also, the 

length of reach, L, can be the unknown.  That is the length of channel required for 

the depth of flow to change from a specified value y1 to another specified value, 

y2, can be determined. 

 
With known values for the Manning roughness factor and the size and shape of 

the channel, estimation of V1, V2,  &  Sf  can proceed as follows.  A value for Sf  

can be estimated from the Manning Equation:  

 
   Sf  =  [nQ/(1.49AmRhm

2/3
)]

2
   

 
NOTE:  The slope used in the above equation is the slope of the water surface, 

not the bottom slope as we are accustomed to using in the Manning equation.  

The slope to be used in the Manning equation is actually the water surface slope, 

but for uniform flow, the surface slope and bottom slope are the same, so either 

can be used. 

    
Am  and  Rhm   are mean values across the reach of channel, that is: 

 

  Am  =  (A1 + A2)/2      and       Rhm  =  (Rh1 +  Rh2)/2 

 
Values of V1 & V2  can be estimated from the definition of average velocity,  

V = Q/A,  as follows: 

 

 

V1 =  Q/A1      and       V2 =  Q/A2   
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  Example #8:  A rectangular flume of 

  planed timber (n = 0.012) is 5 ft wide and 

  carries 60 cfs of water.  The bed slope is 

  0.0006, and at a certain section the depth 

  is 2.8 ft.  Find the distance to the section 

  where the depth is 2.5 ft.    

       

  Solution:  This will be done using a single 

  Watch out here !  This step calculation for the 0.3 ft change in depth. 

  isn't hard, but there are From the problem statement:  Q = 60 cfs,  

  a lot of steps and it can  n = 0.012, So = 0.0006,  b = 5 ft, y1 = 2.8 ft, 

     get tedious !!   and y2 = 2.5 ft.     

 

 

The other necessary parameters are calculated as follows: 

 

V1  =  Q/A1  =  60 ft
3
/sec/(5)(2.8)ft

2
  =  4.286 ft/sec 

 

V2  =  Q/A2  =  60 ft
3
/sec/(5)(2.5)ft

2
  =  4.8 ft/sec 

 

Am  =  (A1 + A2)/2   =  [(5)(2.8) + (5)(2.5)]/2  =  13.25 ft
2
   

 

Rh1  =  A1/ P1  =  (5)(2.8)/[5 + (2)(2.8)]  =  1.32 ft 

 

Rh2  =  A2/ P2  =  (5)(2.5)/[5 + (2)(2.5)]  =  1.25 ft 

 

Rhm  =  (Rh1 +  Rh2)/2  =  (1.32 + 1.25)/2  =  1.285 ft 

 

Sf  =  [nQ/(1.49AmRhm
2/3

)]
2
  =  [(0.012)(60)/(1.49(13.25)(1.285

2/3
)]

2
   

 

  =  0.0009520 

 

Substituting all of these values into equation (9) gives: 

 

2.8 -  2.5  =   (4. 8
2
  -  4.286

2
)/(2)(32.2)  +  (0.000950 – 0.0006)L  
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Solving for L:     L  =  647 ft 

 
Example #9:  In Example #8, is the 2.5 ft depth upstream or downstream of the 

2.8 ft depth? 

 

Solution:  Since L as calculated from equation (9) is positive,  the 2.5 ft depth is 

downstream of the 2.8 ft depth. 

 

NOTE:  Equation (9) is written with L being positive for y1 being the upstream 

depth and y2 being the downstream depth.  In the solution to Example #8, y1 was 

set to be 2.8 ft and y2 was set to be 2.5 ft.  Since L came out positive in the 

calculation, this confirmed that the assumed direction of flow was correct.  If L 

had come out negative, that would have meant that the flow was in the opposite 

direction. 

 
Example #10:  A rectangular channel is 30 ft wide, has a slope of 1/3000, and 

Manning roughness of 0.018.  The normal depth for this channel is 12 ft.  Due to 

an obstruction, the depth of flow at one point in the channel is 18 ft.  Determine 

the length of channel required for the transition from the 18 ft depth to a depth of 

12.5 ft.  Use step-wise calculations with one foot increments of depth. 

 
Solution:  A set of calculations like those of Example #8 will be done six times 

(for 18 to 17 ft; for 17 to 16 ft; etc, down to 13 to 12.5 ft).  For repetitive 

calculations like this it is convenient to use a spreadsheet such as Excel. 

 

First the flow rate, Q, must be calculated for the normal depth of 12 ft. 

 

The Manning equation:    Q = (1.49/n)A(Rh
2/3

)S
1/2    

 

     = (1.49/0.018)[(30)(12)][(30)(12)/(30 + 24)]
2/3

(1/3000)
1/2   =  1927.2 cfs 

 

The table below is copied from the Excel spreadsheet in which the calculations 

were made.  In each column, calculations are made as shown above for Example 

#8.  It can be seen that the distance for the transition from a depth of 12.5 ft to a 

depth of 18 ft is 42,260 feet or 8.004 miles.  The negative sign for L shows that 

the flow is from the 12.5 ft depth to the 18 ft depth, which confirms what we 

already knew from the problem statement. 
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Q, cfs 1927.2 1927.2 1927.2 1927.2 1927.2 1927.2 

y1, ft 18 17 16 15 14 13 

y2, ft 17 16 15 14 13 12.5 

A1, ft
2
  540 510 480 450 420 390 

A2, ft
2
  510 480 450 420 390 375 

Am, ft
2
  525 495 465 435 405 382.5 

V1, ft/s 3.569 3.779 4.015 4.283 4.589 4.942 

V2, ft/s 3.779 4.015 4.283 4.589 4.942 5.139 

Rh1, ft 8.182 7.969 7.742 7.500 7.241 6.964 

Rh2, ft 7.969 7.742 7.500 7.241 6.964 6.818 

Rhm, ft 8.075 7.855 7.621 7.371 7.103 6.891 

Sf   0.0001214 0.0001417 0.0001672 0.0001997 0.0002420 0.0002825 

L, ft -4605.0 -5068.1 -5809.8 -7167.4 -10380.4 -9229.0 

Cumul. L, ft -4605.0 -9673.1 -15482.9 -22650.3 -33030.6 -42259.6 

Cumul. L, mi -0.872 -1.832 -2.932 -4.290 -6.256 -8.004 

 

 
The graph below shows a plot of the non-uniform surface profile calculated in the 

table above for Example #10.  Based on the problem statement this physical 

situation is like that for the M1 profile in Figure 7.  Also, the shape of the surface 

profile is like that for the M1 profiles in Figures 6 and 7. 

 

 

 L, mi y, ft  

 

 
 

     

 0 12.5       

 1.748 13       

 3.714 14       

 5.071 15       

 6.171 16       

 7.131 17       

 8.003 18       
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8. Summary 
 

  Through the use of the Froude number, it is possible to determine whether a 

specified example of open channel flow is subcritical or supercritical flow.  When 

supercritical flow occurs on a mild slope, which cannot maintain the supercritical 

velocity, there will be an abrupt transition to subcritical flow in the form of a 

hydraulic jump.  Non-uniform flow, which occurs as a smooth transition from one 

flow condition to another, is often called gradually varied flow.  Any gradually 

varied flow example will be one of 13 possible classifications, based on the slope 

of the channel and the relationships among  y,  yc, &  yo.  A specified gradually 

varied flow profile can be calculated as depth versus distance along the channel 

using a step-wise calculation, which was discussed and illustrated with examples 

in this course.   
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