

PDHonline Course K154 (4 PDH)

Practical Multi-Factor Test Design and Analysis

Instructor: H.D. Mitchell III, P.E.

2020

PDH Online | PDH Center

5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone: 703-988-0088 www.PDHonline.com

An Approved Continuing Education Provider

Practical Multi-Factor Test and Analysis

Quiz Questions

- 1. Multi-Factor testing can identify interactions between controlled factors.
 - a. True
 - b. False
- 2. Equipment specifications are not an important consideration in test design.
 - a. True
 - b. False
- 3. Uncontrolled factors like weather conditions can be ignored.
 - a. True
 - b. False
- 4. The variance of a population is

$$\sigma^2 = \sum_{n=1}^{N} (Sn - \mu)^2 / (N-1)$$

- a. True
- b. False
- 5. The Sample Standard Deviation is the square root of the Sample Variance.
 - a. True
 - b. False
- 6. In a normally distributed population, what percentage will be within 1 standard deviation of the mean?
 - a. 95.4 %
 - b. 50.2 %
 - c. 45.7 %
 - d. 68.2 %
- 7. ANOVA is an acronym for
 - a. Algebraic Number Variation Analysis
 - b. Alternative Numeric Variance Analysis
 - c. Analysis of Variance
 - d. Action Notation of Variation
- 8. The null hypothesis of an ANOVA is
 - a. All the treatment will give different results.
 - b. All the treatments will yield the same results.
 - c. The F ratio will equal 1.
 - d. The F ratio will be less than 1.
- 9. A factor tested at two levels has how many degrees of freedom?
 - a. 2
 - b. 0
 - c. 1
 - d. 3

- 10. What is the error term degrees of freedom for a 2³ test with 3 replications?
 - a. 16
 - b. 24
 - c. 8
 - d. 4
- 11. A 2³ test with 3 replications indicates a contrast of 16.7 for factor A. What is the Sum of Squares for factor A?
 - a. 16.7
 - b. 2.0875
 - c. 11.62
 - d. Not enough information.
- 12. The mean squares for factor A above is
 - a. 16.7
 - b. 2.0875
 - c. 11.62
 - d. Not enough information.
- 13. A calculated probability for a factor or interaction of 0.05 indicates
 - a. A 5% probability of the factor changing the test response.
 - b. A 5% probability of the result occurring randomly.
 - c. A 5% chance of success.
 - d. A 5 % chance of interaction.
- 14. The Total Sum of Squares for a 2³ test with 2 replications and a standard deviation on all data of 15.8 is
 - a. 3744.6
 - b. 237
 - c. 16.64
 - d. 1.05
- 15. A normal probability plot of residuals resulting in a straight line indicates a normal distribution and aids in validating the test data.
 - a. True
 - b. False

A test of vibration levels in a milling process is proposed to test bit size, RPM and feed rate with the objective to minimize the vibration level. The factors are as follows:

	A: Bit Diameter	B:RPM	C: Feed Rate in/min
-	1/8	250	2
+	1/4	400	3.5

3 replications are run for each test with the data as follows:

Treatment	REP 1	REP 2	REP 3
1	25.025	17.7375	22.75
2	37.4	30.8	34
3	21.8625	20.7625	19.875

4	56.375	49.9125	51.25
5	25.9875	19.8	23.625
6	33	30.9375	30
7	19.9375	19.525	18.125
8	60.3625	54.8625	54.875

Use the 2 x3 template to fill in the data and perform the calculations for the answers to questions 16-xx.

- 16. What factors and interactions are calculated to be Statistically Significant at the 95% confidence level?
 - a. Bit Diameter and Feed Rate
 - b. Bit Diameter and RPM
 - c. Bit Diameter, RPM, Bit Diameter and RPM Interaction, Bit Diameter and RPM and Feed Rate Interaction.
 - d. Bit Diameter, Feed Rate, RPM and Feed Rate Interaction
- 17. The largest effect calculated is for
 - a. Bit Diameter
 - b. RPM
 - c. Feed Rate
 - d. Bit Diameter and RPM Interaction
- 18. Treatment 4 conditions are
 - a. 1/8 Bit Diameter, 250 RPM and 2 in/min feed rate
 - b. 1/4 Bit Diameter, 250 RPM and 3.5 in/min feed rate
 - c. 1/8 Bit Diameter, 400 RPM and 2 in/min feed rate
 - d. 1/4 Bit Diameter, 400 RPM and 2 in/min feed rate
- 19. The error Mean Squares is
 - a. 120.98
 - b. 7.56
 - c. 4634.3
 - d. 16
- 20. The lowest resulting vibration would be expected to be
 - a. 1/8 Bit Diameter, 250 RPM and 2 in/min feed rate
 - b. 1/4 Bit Diameter, 250 RPM and 3.5 in/min feed rate
 - c. 1/8 Bit Diameter, 250 RPM and 3.5 in/min feed rate
 - d. 1/4 Bit Diameter, 400 RPM and 3.5 in/min feed rate
- 21. The Signal to Noise Ratio for the Bit Diameter / RPM interaction is
 - a. 892
 - b. 38.5
 - c. 118
 - d. 12.2
- 22. The cumulative probability point (Pk) for the residual of treatment 5, rep 1 is
 - a. .604
 - b. .062
 - c. .479
 - d. .813

- 23. The rank of residual for treatment 4, rep 2 is
 - a. 22
 - b. 4
 - c. 2
 - d. 1
- 24. The residuals plot for this test is a roughly linear line and indicates a normal distribution
 - a. True
 - b. False
- 25. The mean value for vibration with a ¼ diameter bit, 400 RPM and 3.5 in/min feed rate is
 - a. 33.7
 - b. 56.7
 - c. 21.8
 - d. 31.2