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Module 3 

    

Point Positioning 

 

             In point positioning, the positions of the satellites are available from the data in their 

broadcast ephemerides.  The satellite clock offset and the ionospheric corrections are also available 

to a GPS receiver once it has locked on.  That is once it has correlated its code with the codes it is 

receiving.  Then it can immediately read the Navigation messages of all four or more satellites it is 

tracking.  But the receiver must assume that all these corrections in the Navigation message are 

absolutely correct, which is a bit of an exaggeration.  In fact, there are errors in these corrections.  

And along with the timing errors between the receiver and satellite clocks, receiver noise, and any 

multipath, they still contaminate the position that results. (See module 2 for a more complete 

discussion of these biases.) 

 

                Nevertheless this kind of positioning is the fulfillment of the original idea behind GPS.  It 

relies on a coded pseudorange measurement and can be used for virtually instantaneous positioning. 

  Pseudoranges from the receiver to three GPS satellites provide enough data to solve three Cartesian 

coordinates, ux, uy, and uz of the receiver.  The fourth pseudorange to the fourth satellite provides the 

information for the solution of the receiver's clock offset, dTu, as illustrated in the equations below 

and Figure 3.1.   
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Figure 3.1 
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                   The ability to achieve so much redundancy in the measurement of the receiver’s clock 

error, is one reason the moderate stability of quartz crystal clock technology is entirely adequate as a 

receiver oscillator. 

 

                      A unique solution is found here because the number of unknowns is not greater than 

the number of observations, obviously observing more satellites makes the solution even better.  But 

when the receiver tracks at least four satellites simultaneously; these four equations can be solved 

simultaneously for every epoch of the observation.  An epoch in GPS is a very short period of 

observation time, and is generally just a small part of a longer measurement.  However, theoretically 

there is enough information in any single epoch to solve these equations.   

 

Relative Positioning 

          

              When two or more receivers are available relative positioning is possible and the accuracy 

of GPS positioning improves.  Relative positioning can attain higher accuracy than point positioning 

because of the extensive correlation between observations taken to the same satellites at the same 

time from separate stations.  In other words, two receivers operating simultaneously, collecting 

signals from the same satellites will record errors, but very similar errors.  This is especially true 

when you consider that the distances between such stations on the earth are very short compared 

with the 20,000-km altitude of the GPS satellites. Relative positioning generally relies on carrier 

phase ranging instead of code pseudoranges. 

   

Carrier Phase 
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Carrier phase is the observable at the center of high accuracy surveying applications of GPS. 

 It is also known as the carrier beat phase observable.  It depends on the carrier waves themselves, 

the unmodulated L1, L2 and L5, rather than their P and C/A codes.  There is an interesting 

approximation that illustrates the potential of carrier phase ranging, “ The One-Percent Rule of 

Thumb.” 

 

Assume for the moment most of the errors in the receiver and satellite clocks, receiver noise, 

ionospheric delay, broadcast ephermeris errors or multipath are gone.  Under such a circumstance 

you could expect pseudoranges to be accurate within about one percent of the chipping rate of the 

code used, whether it is the P code or the C/A code.  In practice, positions derived from these codes 

are rather less reliable than that, of course, because they must rely on the Navigation message 

corrections for the most part.   

 

But consider this a P code chip occurs every 0.0978 of a microsecond.  So by using this rule, 

a P code based measurement could have a maximum precision of about 1- percent of about a tenth 

of a microsecond, or one nanosecond.  One nanosecond multiplied by the speed of light is 

approximately 30 centimeters, 1 percent of the length of a single P-code chip.  

 

The C/A code based pseudorange is 10 times less precise. Its chipping rate is 10 times 

slower.  A C/A code pseudo-range would have a maximum resolution of about 3 meters, that is 1 

percent of the length of a single C/A code chip. 
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Ok, now take a look at this same 1- percent rule of thumb applied to the carrier phase 

observable.  Instead of a code chip as the basis of the measurement, it is the wavelength of the 

carrier.  How long is one wavelength of the GPS carriers?  The length of a single wavelength of each 

carrier can be calculated using the same formula as was used previously in Module 1. 

 

     

 

 

 Where:    λ = the length of each complete wavelength in meters; 

                 ca = the speed of light corrected for atmospheric effects;  

                 f  = the frequency in hertz.  

 

The L1-1575.42 MHz carrier transmitted by GPS satellites has a wavelength of approximately 19 

cm. 

f

ca

 

Hz

mps
6

6

10*42.1575

10*300
 

m19.0  

 

The L2-1227.60 MHz frequency carrier transmitted by GPS satellites has a wavelength of 

approximately 24 cm.  

f

c
= a  
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f

ca

 

Hz

mps
6

6

10*60.1227

10*300
 

m24.0  

 

The L5-1176.45 MHz frequency carrier transmitted by GPS satellites has a wavelength of 

approximately 25 cm.  

f

ca

 

Hz

mps
6

6

10*45.1176

10*300
 

m25.0  

 

Therefore, using the wavelength of any GPS carrier as the observable, the measurement resolved to 

1 percent of the wavelength would be about 2 mm.  It is no surprise then that the carrier phase 

observable is preferred for the higher precision work most surveyors have come to expect from GPS. 

However, first there is something called the cycle ambiguity problem that needs to be mentioned.  

We’ve seen before with the EDM, except it is a little more difficult to solve in GPS  

 

An Illustration of the Cycle Ambiguity Problem 
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 While carrier phase, or carrier beat phase as it is sometimes called, is different than the 

pseudorange, the basis of the measurements have some similarities.  For example, the foundation of 

a pseudorange measurement is the correlation of the codes received from a GPS satellite with 

replicas of those codes generated within the receiver.  The foundation of the carrier phase 

measurement is the combination of the unmodulated carrier itself received from a GPS satellite with 

a replica of that carrier generated within the receiver. 

 

It’s like a distance measurement by an EDM.  As mentioned earlier an EDM sends a carrier 

wave to the reflector, and generates an identical internal reference.  When the external beam returns 

from the reflector, it is compared with the reference wave.  The difference in phase between the two 

reveals the fractional part of the measurement, even though the number of complete cycles between 

the EDM and the reflector may not be immediately apparent.  That is until modulated carriers of 

longer wavelengths are used (See module 1 for a more complete discussion of this process). 

 

Likewise, it is the phase difference between the incoming signal and the internal reference 

generated inside a GPS receiver that reveals the fractional part of the carrier phase measurement in 

GPS.  The incoming signal is from a satellite rather than a reflector of course, but like an EDM 

measurement, the internal reference derived from the receiver’s oscillator is used for comparison.  

And just like an EDM measurement it is the difference in phase between the two reveals the 

fractional part of the range measurement.  And as the 1- percent rule of thumb illustrates this 

comparison is capable of a much more accurate measurement than pseudoranges.   
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But there is a problem.  Again, just like the EDM measurement the number of complete 

cycles is not immediately known.  In other words, when the receiver locks onto the carrier it cannot 

know how many full wavelengths stand between the satellite and itself at that instant and without 

that information it isn’t possible to know the full distance, of course.  

 

 There is one helpful fact about the cycle ambiguity though.  It has to be an integer. 

The full cycles between the receiver and the satellite at lock on must be a whole number.  So it is 

also called the integer cycle ambiguity. 

 

The situation is a lot like an unofficial technique used by some nineteenth century contract 

surveyors on the Great Plains.  The procedure can be used as a rough illustration of the cycle 

ambiguity problem in GPS.  

 

It was known as the buggy wheel method of chaining.  Some of the lines of the public land 

system that crossed open prairies were originally surveyed by loading a wagon with stones or stakes 

and tying a cloth to a spoke of the wheel.  One man drove the team, another kept the wagon on line 

with a compass and a third counted the revolutions of the flagged wheel to measure the distance.  

When there had been enough turns of the improvised odometer to measure half a mile they set a 

stone or stake to mark the corner and then rolled on, counting their way to the next corner.   

 

A GPS receiver is like the man assigned to count the turns of the wheel.  He is supposed to 

begin his count from the moment the crew leaves the newly set corner, but instead, suppose he jumps 

into the wagon, gets comfortable and takes an unscheduled nap.  When he wakes up the wagon is on 
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the move.  Trying to make up for his laxness, he immediately begins counting.  But at that moment 

the wheel is at a half turn, a fractional part of a cycle.  He counts the subsequent half turn and then, 

back on the job, he intently counts each and every full revolution as they come around.  His tally 

grows as the cycles accumulate, but he is in trouble and he knows it.  He cannot tell how far the 

wagon has traveled; he was asleep for the first part of the trip.  He has no way of knowing how far 

they had come before he woke up and started counting.  He is like a GPS receiver that cannot know 

how far it is from the satellite when it starts counting phase cycles.  They can tell it nothing about 

how many cycles stood between itself and the satellite when the receiver was locked on and began 

tracking.  Those unknown cycles are the cycle ambiguity. The 360  cycles in the carrier phase 

observable are wavelengths λ, not revolutions of a wheel.  But there is a solution to the cycle 

ambiguity problem.  It is called differencing . 

 

Differencing 

 

           In GPS the word differencing has come to represent several types of simultaneous baseline 

solutions of combined measurements.  Now, obviously, differencing is only possible using two or 

more receivers and relative positioning. And it usually involves carrier phase, or carrier beat phase, 

measurements.  The lines between the pairs of receivers are called vectors or baselines.  In these 

illustrations only two receivers are used, but there could certainly be more and the principles would 

be the same.  OK, the most frequently used differencing methods are known as the single difference, 

double difference, and triple difference.  

 

Single Difference 
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                 A single difference, also known as a between-receivers difference, can refer to the 

difference in the simultaneous carrier phase measurements from one GPS satellite as measured by 

two different receivers (Figure 3.2) 

.  
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Figure 3.2
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              Since the two receivers are both observing the same satellite at the same time the satellite 

clock error is eliminated in a single-difference. It is a bonus that the atmospheric biases and the 

orbital errors recorded by the two receivers in this solution are also nearly identical, and can be 

virtually eliminated too. 

 

                Unfortunately, there are still two factors in the carrier beat phase observable that are not 

eliminated by single differencing.  The difference between the integer cycle ambiguities at each 

receiver and the difference between the receiver clock errors remain. 

 

 

Double Difference 

 

                         There is a GPS solution that will eliminate the receiver clock errors.   It involves the 

addition of what might be called another kind of single difference, also known as a between-

satellites difference.  This term refers to the difference in the measurement of signals from two GPS 

satellites, as measured simultaneously at a single receiver (Figure 3.3).  
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Figure 3.3 
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     The data available from the between-satellites difference allow the elimination of the receiver 

clock error.  In this situation, there can be no difference in the clock since only one receiver is 

involved in each of the component single differences.  And the atmospheric effects on the two 

satellite signals are again nearly identical as they come into the lone receiver, so the effects of the 

ionospheric and tropospheric delays are virtually eliminated as well.  

 

 

                         By using both the between-receivers difference and the between-satellites difference, 

a double difference is created.  This combination is virtually free of receiver clock errors and 

satellite clock errors, but still there is one stubborn factor in the carrier beat phase observable that is 

not eliminated.  The integer cycle ambiguity is still in there. 

 

 

Triple Difference 

 

                     Combining two double differences creates A third kind of differencing.  Each of the 

double differences involves two satellites and two receivers.  The difference next derived is between 

two epochs.  The triple difference is also known as the receiver-satellite-time triple difference 

(Figure 3.4), the difference of two double differences of two different epochs.  
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Figure 3.4 
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In the triple difference two receivers observe the same two satellites during two consecutive epochs.  

This solution can be used to quantify the integer cycle ambiguity because if all is as it should be it is 

constant over the two observed epochs. 

 

                    Actually, a triple difference is not sufficiently accurate for short baselines.  It is used to 

find the integer cycle ambiguity. Once the cycle ambiguity is determined it can be used with the 

double difference solution to calculate the actual carrier phase measurement.  Here’s how it works, 

from the moment of a receiver’s lock onto a particular satellite; there are actually three components 

to the total carrier phase observable. 

 

 

                         First is the fractional initial phase, which occurs at the receiver at the first instant of 

the lock-on.  The receiver starts tracking the incoming phase from the satellite.  The receiver grabs 

onto the satellite's signal at some fractional part of a phase.  It is interesting to note that this 

fractional part does not change for the duration of the observation and so is called the fractional 

initial phase.  It is symbolized here by α. 

                   

amiguity cycle = N                  

count cycle observed =                

phase initial fractional =                     

phase total =     

: where

N +  +  = 
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                        Second is the integer number of full cycles of phase that occur from the moment of 

the lock to the end of the observation.  It is symbolized by β, the observed cycle count.  This element 

is the receiver’s consecutive counting of the change in full phase cycles, 1, 2, 3, 4 . . ., between the 

receiver and the satellite as the satellite flies over.  Of the three terms, β is only number that changes 

- that is, if the observation proceeds correctly. 

 

             Third is the integer cycle ambiguity N.  It represents the number of full phase cycles between 

the receiver and the satellite at the first instant of the receiver's lock-on.  N does not change from the 

moment of the lock onward, unless that lock is lost. (Figure 3.5) 
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Figure 3.5 
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                      In other words, the total carrier phase observable consists of two values that do not 

change during the observation, the fractional phase α, and the integer cycle ambiguity N.  Only the 

observed cycle count β, changes, unless there is a cycle slip. 

 

 

Cycle Slips 

 

              In fact, the triple difference makes the detection and elimination of cycle slips relatively 

easy.  A cycle slip is a discontinuity in a receiver’s continuous phase lock on a satellites signal.  The 

coded pseudorange measurement is immune from this difficulty, but the carrier beat phase is not. 

(Figure 3.6) 

 

 

Figure 3.6 
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                      When lock is lost a cycle slip occurs.  A power loss, an obstruction, a very low signal-

to-noise ratio, or any other event that breaks the receiver’s continuous reception of the satellite’s 

signal causes a cycle slip.  That is, the receiver loses its place in its count of the integer number of 

cycles β and, as a result, N is completely lost and the receiver has to start over from scratch. 

 

There are several methods that may be used to regain a lost integer phase 

value, N.  The triple difference is one of the better alternatives in this regard, as stated earlier the 

triple difference does not depend on the initial integer ambiguity, because it is a constant in time.  

Therefore, when a large residual does appear in its component double differences it is very likely 

caused by a cycle slip.  Even better the obstructed signal can be singled-out by isolating all available 

satellite pairs until the problem is found.  This utility in fixing cycle slips is the primary appeal of the 

triple difference.  It can be used as a preprocessing step to weed out cycle slips and provide a first 

position for the receivers.  

 

Summary 

                      

                     Relative positioning by carrier phase measurement is the primary vehicle for high-

accuracy GPS surveying.  Simultaneous observations, double differencing in postprocessing, and the 

subsequent construction of networks from GPS baselines are the hallmarks of geodetic and control 

work in the field.  The strengths of these methods generally outweigh their weaknesses, particularly 

where there can be an unobstructed sky and relatively short baselines and where the length of 

observation sessions is not severely restricted.   
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                  However, conditions are not always so ideal.  Where obstructions threaten to produce 

cycle slips, coded pseudorange measurements may offer an important advantage over carrier phase.  

Pseudorange measurements also may be preferred where accuracy requirements are low and 

production demands are high.   

                     

              Differencing is an ingenious approach to minimizing the effect of errors in carrier phase 

ranging.  It is a technique that largely overcomes the impossibility of perfect time synchronization. 

Double differencing is the most widely used formulation. Double differencing still contains the 

initial integer ambiguities, of course.  And the estimates of the ambiguities generated by the initial 

processing are usually not integers, in other words, some orbital errors; atmospheric errors, etc. 

remain.  But with the knowledge that the ambiguities ought to be integers, during subsequent 

processing it is possible to force estimates for the ambiguities that are in fact integers.  When the 

integers are so fixed, the results are known as a fixed solution, rather than a float solution.  It is the 

double differenced carrier phase based fixed solution that makes the very high accuracy possible 

with GPS.   

 

              However, in this discussion of errors it is important to remember that multipath, cycle slips, 

incorrect instrument heights, and a score of other errors whose effects can be minimized or 

eliminated by good practice are simply not within the purview of differencing at all.  The 

unavoidable biases that can be managed by differencing - including clock, atmospheric, and orbital 

errors - can have their effects drastically reduced by the proper selection of baselines, the optimal 

length of the observation sessions, and several other considerations included in the design of a GPS 

survey.  But such decisions require an understanding of the sources of these biases and the 



 

 

22 

conditions that govern their magnitudes.  The adage of, "garbage in, garbage out," is as true of GPS 

as any other surveying procedure.  The management of errors cannot be relegated to mathematics 

alone.    

 

 


