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1.0 INTRODUCTION 
 
This course focuses on presenting a well established computational method for 
calculating stresses/strains in reinforced laminated composite structures. The basis for the 
presented computational method is often referred to as classical lamination theory. A 
clear understanding of this approach is supported by the development of the fundamental 
mechanics of an orthotropic lamina (ply). Various failure theories are presented each 
requiring that stresses/strains be quantified on a ply-by-ply basis in order to make failure 
predictions.  Both applied loads and hygrothermal (thermal and moisture) effects are 
treated in the computational procedure. Stress and failure predictions are an important 
part of the process required in the design of laminated composite structures.  
 
The learning objectives for this course are as follows: 
 

1. Understanding the differences between isotropic, orthotropic and anisotropic 
material behavior 

2. Having knowledge of the material constants required to define Hooke’s law for an 
orthotropic lamina (ply) 

3. Understanding the restrictions on the material constants required in evaluating 
experimental data  

4. Knowing the difference between reference and natural (material) coordinates for 
an orthotropic lamina 

5. Being familiar with the stress-strain relations in reference and natural coordinates 
for an orthotropic lamina 

6. Understanding the coordinate transformations used in transforming stresses and/or 
strains from one coordinate system to another  

7. Knowing generally the types of tests performed to determine the stiffness and 
strength properties of an orthotropic lamina 

8. Having knowledge of a number of biaxial strength (failure) theories used in the 
design of laminated composite structures 

9. Understanding which in-plane strength quantities are needed, as a minimum, in 
applying various failure theories 

10. Knowing the difference between separable and generalized failure theories 
11. Understanding that the maximum stress and maximum strain failure theories 

make similar predictions except under certain material behavior 
12. Appreciating under what conditions the Chang failure criteria reduces to the 

Hashin failure criteria 
13. Knowing the basis for the fact that the Tsai-Wu failure criteria is more general 

than the Tsai-Hill failure criteria 
14. Being familiar with the effect of the direction of shear stress on lamina strength 
15. Understanding the laminate orientation code used to define stacking sequence 
16. Being familiar with a number of special laminate constructions designed to 

eliminate undesirable composite material behavior 
17. Understanding the computational procedure for determining the stresses/strains in 

a laminated composite subject to applied loads and/or hygrothermal effects 
18. Having knowledge of the limitations of classical lamination theory. 
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It is important to note a limitation on the computational methodology presented in this 
course. Stress predictions from classical lamination theory are quite accurate in locations 
away from boundaries, e.g., free edges, edge of a hole or cutout, etc., of the laminate. 
Thus at distances equal to the laminate plate(shell) thickness or greater, the 
computational method presented herein is accurate and useful in the preliminary design 
of laminated composite structures. The basis for this limitation is that lamination theory 
assumes a generalized state of plane stress which is reasonably accurate away from 
boundaries. Along boundaries, the state of stress becomes three-dimensional with the 
possibility that interlaminar shear and/or interlaminar normal stresses can become 
significant. Deviation of lamination theory along laminate boundaries is often referred to 
as a boundary-layer phenomenon. Computation of stresses along laminate boundaries is 
generally accomplished through the application of finite difference, finite element or 
boundary element method computer programs and is beyond the scope of the 
methodology presented in this course. 
 
2.0 MATERIAL DEFINITIONS 
 
A lamina or ply can be thought of as a single layer within a composite laminate and is 
comprised of a matrix material and reinforcing fibers. When the fibers are long the layer 
is referred to as a continuous-fiber-reinforced composite and the matrix serves primarily 
to bind the fibers together. Alternatively layers with short fibers are denoted as 
discontinuous-fiber-reinforced composites. Lamina are quite thin, i.e., generally on the 
order of 1 mm or .005 in. thick. Lamina can have unidirectional or multi-directional fiber 
reinforcement. Therefore a number of lamina bonded together form a laminate. Most 
laminated composites used in structural applications are in fact multilayered. Laminates 
have identical constituent materials in each ply; otherwise the term hybrid laminate is 
used for laminates comprised of plies with different constituent materials. Fiber 
reinforced composites are heterogeneous but for purposes of design analysis are typically 
assumed to be macroscopically homogeneous. Thus for the computational methodology 
presented in this course, orthotropic lamina (plies) are treated as homogenous with 
directionally dependent properties. Orthotropic material behavior falls somewhere 
between that of isotropic and anisotropic materials. 
 
2.1 Isotropic Material Behavior 
 
For isotropic materials deformation behavior is independent of direction. Thus normal 
stresses produce normal strains only and shear stresses produce shear strains only, as 
depicted in the figure below. 
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    Figure 2.1.   Extensional and Shear Deformation, Isotropic Material 
 
 
2.2 Anisotropic Material Behavior 
 
In the case of anisotropic materials, deformation behavior is dependent on direction. 
Thus, uniaxial tension produces both extensional and shear components of deformation. 
Likewise, pure shear loads also produce extensional and shear deformation. Anisotropic 
material behavior is depicted in the simple sketch below.   
 

 
     Figure 2.2.  Extensional and Shear Deformation, Anisotropic Material 
 
 
2.3 Orthotropic Material Behavior 
 
In the case of orthotropic materials deformation is, in general, direction dependent. An 
exception occurs when loads are applied in natural (material) coordinates. These are by 
definition coordinates in the plane of the lamina, wherein the longitudinal coordinate is 
aligned with the fiber reinforcement and the transverse coordinate is aligned normal to 
the fiber reinforcement. Longitudinal and transverse directions are material axes of 
symmetry in a unidirectionally reinforced composite. When loads are applied in these 
natural coordinates the material response is similar to that of isotropic materials, i.e., 
normal stresses produce normal strains only and shear stresses produce shear strains only 
as shown below. 
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         Figure 2.3.  Extensional and Shear Deformation, Orthotropic Material, 

         (Loaded Along Material Coordinates)  
 
Here the longitudinal and transverse axes are labeled as L and T, respectively. 
Unidirectionally reinforced composites are often referred to as specially orthotropic. 
Furthermore, unidirectionally reinforced laminas are isotropic in the out-of-plane (normal 
to the plane of the lamina) direction. 
 
 
3.0 HOOKE’S LAW FOR ORTHOTROPIC MATERIALS 
 
Generalized Hooke’s law has the tensorial form 
 

klijklij E εσ =   (3.1) 
 
where stresses are related to strains through the elastic constants Eijkl.  
In the matrix form of the constitutive equations, we have 
 

{ } [ ]{ }εσ E=   (3.2) 
                              9x1     9x9 9x1 
 
Here, the stress and strain tensors are of order 9x1 and there are 9x9 or a total of 81 
elastic constants in the stiffness matrix [E]. It will be shown that these 81 elastic 
constants reduce to 21 constants even without any axes of symmetry. With 21 
independent elastic constants we have an anisotropic material. The stress tensor notation 
is sketched in figure 3.1 below.  
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          Figure 3.1.  Stress Tensor Notation 
 
Consider going through this reduction in the number of elastic constants. First, consider 
that we have symmetry in the strains, i.e.,  
 

jiij εε =         ij ≠  
 
It is therefore easily shown that 
 

Eijkl = Eijlk 
 
We also have symmetry in the stress tensor, i.e., jiij σσ =   and therefore,  
 

Eijkl = Ejikl 
 
And thus the two symmetries reduce the elastic constants from 81 to 36.  We have 
 

{ } [ ]{ }εσ E=   (3.3) 
                             6x1     6x6 6x1 
Here we have a total of 36 elastic constants. 
 
Now consider the strain-energy density function defined as a function of the strains as  
 

( )ijUU ε=    (3.4) 
 
with the property 
 

ijijU σε =∂∂ /   (3.5) 
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The simple 1-D analogy of (3.5) relates to the fact that the area under the stress-strain 
curve is equal to the strain energy density. In the 1-D case we have  
 

σε
2
1

=U  

 
Substituting the 1-D form of Hooke’s law, i.e., εσ E=  into the above gives 
 

2

2
1 εEU =  

 
Thus we have simply 
 

σεε ==∂∂ EU /  
 
for a simple uniaxial state of stress. 
 
Getting back to the 3-D case, we substitute the stress-strain relations (3.1) into (3.5)  
 

klijklij EU εε =∂ /    (3.6) 
 
Taking the derivative again we have 
 

( ) ijklijkl EU =∂∂∂ εε //   (3.7) 
 
Interchanging indices gives 
 

( ) klijklij EU =∂∂ εε //   (3.8) 
 
Since the order of differentiation is immaterial we have 
 

( ) ( )ijklklij UU εεεε //// ∂∂=∂∂  
 
Therefore 
 

Eijkl = Eklij 
 
Since ij and kl are interchangeable, we now have 21 constants for an anisotropic material. 
 
In the matrix form of the previously written constitutive equations (3.3), the stiffness 
matrix [ ]E  is therefore a symmetric matrix. We have n(n+1)/2 independent constitutive 
terms in [E], where n=6. 
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It is more convenient to write Hooke’s law in matrix form as 
 

{ } [ ]{ }εσ Q=   (3.9) 
 
Where [Q] is symmetric as before, so that the off-diagonal stiffness terms are defined as 
Qij = Qji. 
 
If we think of the 1X  and 2X  axes as coordinates in the plane of the lamina, where the 

1X  axis aligns with the fiber reinforcement, the 2X  axis is transverse to the fibers and 
the 3X  axis is then normal to the ),( 21 XX  plane, these axes are sketched below.  
 

 
  

        Figure 3.2.  Natural (Material) Coordinates of Unidirectionally 
        Reinforced Lamina 

 
 
The ply (lamina) depicted above shows only one fiber through the ply thickness. This is 
atypical as there are normally several fibers through the thickness of a typical ply. Note 
that in developing all of the formulation presented herein, the ),( TL  axes are 
interchangeable with the (X1,X2) axes and  T ′  aligns with the X3 axis.  
 
A more typical cross section of a composite taken from a single ply is shown in the 
photograph (Figure 3.3) below. 
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              Figure 3.3.  Typical Fiber Distribution in Unidirectionally 

       Reinforced Lamina (Ply) 
 
An important factor in determining the stiffness and strength properties of composite 
materials is the relative proportion of matrix to reinforcing materials. These proportions 
can be quantified as either weight fractions or volume fractions. The volume fiber 
fraction is defined as 
 

cff vvV /=   (3.10) 
 
Here  fv  is the volume of fibers and cv is the associated volume of composite. Similarly, 
the weight fiber fraction is given as 
 

cff wwW /=   (3.11) 
 
where fw is weight of fibers and cw  is the associated weight of composite.  
 
The stress tensor contains the terms 312312321 ,,,,, τττσσσ  and the strain tensor contains the 
terms 312312321 ,,,,, γγγεεε , respectively. Here, ijγ are the engineering shear strains. Note 
the relationship  
 

ijij εγ 2=   (3.12) 
where ijε are the tensorial shear strains. 
 
If we assume that we have one plane of material symmetry, X3=0, i.e., the X1,X2 plane, 
then the constitutive equations can be written in matrix form as 
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Thus no normal (extensional) stresses are produced by the out-of-plane ( )3123,γγ  shear 
stresses. Due to symmetry in the Qij constitutive terms, we have reduced the number of 
independent material constants from 21 to 13. 
 
As noted the coordinates X1, X2, and X3 align with the material (natural) coordinates, we 
have X1 aligning with the fiber direction, X2 is transverse to the fiber direction and X3 is 
normal to the plane of the lamina. This coordinate alignment results in the (X2,X3) plane 
becoming an additional plane of symmetry. In these natural coordinates stresses 21,σσ  
and 3σ  do not produce in-plane shear strain 12γ , and out-of-plane shear stresses 23τ  and 

31τ  become decoupled. In these natural coordinates, the constitutive equations reduce to 
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  (3.14) 

 
We now have reduced the number of independent material constants to 9 for the 3D case 
of an orthotropic material, i.e., utilizing material (natural) coordinates for the lamina. 
 
If we consider the special case of a 2D orthotropic material and continue to use the 
material (natural) coordinates, the constitutive equations simply reduce to  
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  (3.15) 

 
In this case, there are only 4 independent material constants. This particular material case 
can be described as a specially orthotropic lamina. 
 
Inversion of the constitutive matrix [Q] gives the strains as a function of stresses. In 
matrix form we have 
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{ } [ ]{ }σε S=   (3.16) 

 
where [S] = [Q]-1, and [S] is denoted the compliance matrix. In expanded matrix form this 
becomes 
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For the specially orthotropic lamina where the reference axes coincide with the material 
axes of symmetry, the engineering constants can be defined in more familiar terms. The 

21 , XX  axes become the L-T axes and the 3X axis becomes the T ′  axis as shown is the 
sketch below (Figure 3.4). The L-T axes are in the plane of the lamina, where the 
longitudinal L  axis is directed along the fibers and the transverse T  axis is directed 
perpendicular to the fiber reinforcement. The T ′ axis is normal to the plane of the lamina 
(often referred to as the through-the-thickness direction). 

 
   Figure 3.4.  Longitudinal, Transverse and Through-The-Thickness  

           Axes, Unidirectionally Reinforced Lamina 
 
 
The engineering constants are defined as 
 
           EL = Elastic modulus in longitudinal (along the fibers) direction 
           ET = Elastic modulus transverse to the fiber direction 

LTν = Major Poisson’s ratio (transverse strain produced by longitudinal stress) 

TLν  = Minor Poisson’s ratio (longitudinal strain produced by transverse stress) 
 
The compliance terms in [S] can be defined in terms of these engineering constants as  
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Thus in matrix form we have 
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Since [Q] = [S]-1 the constitutive (stiffness) terms can be defined by inverting [ ]S   
 

TLLT

LE
Q

νν−
=

111  

 

TLLT

TE
Q

νν−
=

122  

        (3.20) 

TLLT

LTL

TLLT

TLT EE
Q

νν
ν

νν
ν

−
=

−
=

1112  

 
  LTGQ =66  

 
As an example, these engineering constants for Carbon/Epoxy AS/H3501 are given as 
 

EL = 138 GPa, ET = 8.96 GPa, GLT = 7.10 GPa and LTν = 0.3 
 
We know that we have symmetry such that Qij = Qji and Sij = Sji. Therefore, 
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L

LT

T

TL

EE
νν

=   (3.21) 

 
Thus if the major Poisson’s ratio LTν is known, then the Minor Poisson’s ratio is 
determined from 
 

LT
L

T
TL E

E
νν =   (3.22) 

 
and only 4 independent material constants EL, ET, GLT, and LTν are needed to specify the 
behavior of a specially orthotropic lamina. 
 
 
4.0 RESTRICTIONS ON ELASTIC CONSTANTS 
 
More experimental measurements are needed to characterize the behavior of an 
orthotropic material relative to an isotropic material. For the various materials we have 
 

•  3D Orthotropic, need 9 independent constants 
•  2D Orthotropic, need 4 independent constants 
•  Isotropic, need only 2 independent constants  

 
For an isotropic material, we have a relationship between Young’s modulus, shear 
modulus and Poisson’s ratio, i.e., )1(2/ ν+= EG . Thus we need only two of the three 
material constants to determine the third. 
 
A unidirectional fiber composite can be considered to be transversely isotropic. Consider 
the TTL ′−−  coordinate system where T ′  is normal to the LT (lamina) plane. The 
material constants are related as below 
 

TT EE ′=  
 

TLLT GG ′=  
 

TLLT ′= νν  
 
and 

              
)1(2 TT

T
TT

E
G

′
′ +
=

ν
 

Therefore in this case we have 5 independent constants ( TTLTLTTL andGEE ′νν ,,,, ). 
 
Constraints for isotropic materials are that E, G, and K are all positive, where K is the 
Bulk modulus. Also 
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5.01 ≤≤− ν  

 
Remember that 
 

)1(2 ν+
=

EG  ;         thus  1−≥ν     for G > 0 

 
and 
 

)21(3 ν−
=

EK  ;      thus   
2
1

≤ν      for K > 0 

 
Similar constraints exist for orthotropic materials and are defined as follows 
 

Sii > 0  and Qii > 0 
 
Which is the same as 
 
           0,,,,, 231312321 >GGGEEE  
 
or equivalently 
 
          0,,,,, >′′′ TTTLLTTTL GGGEEE  
 
all essentially the same constraints. The following constraints are also required 
 

0)1(
0)1(

0)1(

>−
>−
>−

′′

′′

TTTT
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νν
νν
νν

  (4.1) 

 

These constraints are required because, e.g., 0
)1(11 >

−
=

TLLT

LEQ
νν

. 

 
Since we have the previously shown relationship   
 

T

TL

L

LT

EE
νν

=    (3.21) 

 
We can combine (3.21) with the first equation in (4.1) to give a constraint of the form 
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similarly we have the additional constraints 
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The preceding constraints can be used to great benefit to evaluate experimental data. For 
example, tensile testing both in the longitudinal (L) and transverse (T) directions gives 

LTLE ν,  from longitudinal loading and TLTE ν,  from the transverse loading. A check on 

the validity of the data requires that the constraint equations 
2/1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<

T

L
LT E

E
ν and  

2/1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<

L

T
TL E

E
ν be satisfied. 

 
 
5.0 STRESS-STRAIN RELATIONS FOR GENERALLY  

ORTHOTROPIC LAMINA 
 
Consider laminated composite structures that are constructed by stacking a number of 
unidirectional lamina (plies) in a specified orientation sequence. Thus the principal 
material (natural) coordinates of each lamina can be oriented at a different angle with 
respect to a common reference coordinate system. The behavior of each lamina can be 
described by the previously derived stress-strain relations in terms of the material 
(natural) axes. For the purpose of analyzing laminated composite structures, it is 
necessary to refer the stress-strain relations to a convenient reference coordinate system. 
Thus we need to derive the stiffness and compliance matrices for an orthotropic lamina in 
terms of arbitrary axes. A lamina referred to arbitrary axes is called a generally 
orthotropic lamina. 
 
The principal material L-T axes of each orthotropic lamina are oriented at an angle θ  
with respect to a common set of reference X-Y axes, as sketched below. 
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 Figure 5.1.  Orthotropic Lamina with Oriented Fiber Reinforcement  
 
The following transformation relations can be derived from equilibrium relating stresses 
and strains in X-Y coordinates to L-T coordinates. 
  

[ ]
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

XY

Y

X
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T

L

T
τ
σ
σ

τ
σ
σ

   (5.1) 

and 

[ ]

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

XY

Y

X

LT

T

L

T

γ

ε
ε

γ

ε
ε

2
1

2
1

  (5.2) 

 
Here, the transformation matrix [ ]T  is defined as 
 

( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

22

22

22

2
2

scscsc
sccs

scsc
  (5.3) 

 
where )cos(θ=c  and )sin(θ=s . 
 
Inversion gives the relation between stresses and strains in material L-T coordinates to 
those in X-Y coordinates. We have 
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[ ]
⎪
⎭

⎪
⎬
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⎨
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⎭
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⎨
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1    (5.4)  

and 
 

[ ]

⎪
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⎭

⎪
⎪
⎬
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⎪
⎪
⎩

⎪
⎪
⎨

⎧
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⎪
⎪
⎭

⎪
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⎬

⎫

⎪
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⎪
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−
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T

L
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Y

X

T

γ

ε
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γ

ε
ε

2
1

2
1

1   (5.5) 

 
and the inverted transformation matrix 1][ −T  is defined as 
 

( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−

22

22

22

2
2

scscsc
sccs
scsc

  (5.6) 

 
We have the stress-strain relationships for generally orthotropic laminas in natural 
(material) coordinates. It is useful to have these relationships defined in the reference XY 
coordinates as well. In order to derive the relationship between strain and stress in XY 
coordinates, first substitute (5.1) into (3.19) giving 
 

[ ][ ]
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⎬

⎫
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τ
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   (5.7) 

 
We can introduce a useful transformation between tensorial and engineering shear strains 
as below 
 

[ ]
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⎪
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   (5.8)  

 
 
where 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

200
010
001

R    (5.9)  
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Substituting (5.8) into (5.7) gives 
 

[ ] [ ][ ]
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⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

XY

Y

X

LT

T

L

TSR
τ
σ
σ

γ

ε
ε

2
1

   (5.10) 

 
Now substituting (5.2) into the left hand side of (5.10) yields 
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The transformation matrix [R] can also be used to define the transformation 
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  (5.12) 

 
where  
 

[ ]
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
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Substituting (5.12) into the left hand side of (5.11) gives 
 

[ ][ ][ ] [ ][ ]
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⎧
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Simply rearranging the matrix relationship above gives 
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[ ][ ] [ ] [ ][ ]
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⎨
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⎪
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It is easily shown that the transpose of [ ]T  can be defined as 
 
               [ ] [ ][ ] [ ] 11 −−= RTRT T                           (5.16) 
 
Substituting (5.16) into (5.15) yields the simplified strain-stress relationship in reference 
X-Y coordinates. 
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where 
 

[ ] [ ] [ ][ ]TSTS T=    (5.18) 
 
Note that the compliance matrix [ ]S  is fully populated and is herein represented as 
 

[ ]
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⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
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Relating stress to strain in the reference XY coordinates follows by inverting (5.17) 
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or simply 
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where 
 

[ ] [ ] [ ] [ ] [ ] TTSTSQ −−−−
== 111    (5.22) 
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As with the compliance matrix in the reference X-Y coordinate system, the stiffness 
matrix [ ]Q  is fully populated and can be written as 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

662616

262212
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QQQ
QQQ
QQQ

Q   (5.23) 

 
The stiffness terms in [ ]Q  are related to the 4 independent terms in [ ]Q  as given below. 
 

22
6612

4
22

4
1111 )2(2 csQQsQcQQ +++=  

  
22

6612
4

22
4

1122 )2(2 csQQcQsQQ +++=  
 

)()4( 44
12

22
66221112 scQcsQQQQ ++−+=  

         (5.24) 
)()22( 44

66
22

6612221166 csQcsQQQQQ ++−−+=  
 

3
661222

3
66121116 )2()2( csQQQscQQQQ −−−−−=  

 
scQQQcsQQQQ 3

661222
3

66121126 )2()2( −−−−−=  
 
Similarly, the compliance terms in [ ]S  are related to the 4 independent terms in [ ]S  as 
written below. 
 

22
6612

4
22

4
1111 )2( csSSsScSS +++=  

 
22

6612
4

22
4

1122 )2( csSScSsSS +++=  
 

)()( 44
12

22
66221112 scSscSSSS ++−+=  

        (5.25) 
)()422(2 44

66
22

6612221166 scSscSSSSS ++−−+=  
 

3
661222

3
66121116 )22()22( csSSSscSSSS −−−−−=  

 
scSSScsSSSS 3

661222
3

66121126 )22()22( −−−−−=  
 
As an example of calculating stresses consider the lamina shown below 
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  Figure 5.2.  Stresses Xσ  and Yσ  Applied to Angled Ply,  

        Fiber Orientation o60=θ  
 
Assume that we know the stress values in X-Y coordinates and that the lamina is a typical 
E-glass epoxy composite material. Stresses have values 
 

)9.2(20 KpsiMPaX =σ   
and 
  )8.5(40 KpsiMPaY =σ  
 
The E-glass epoxy properties are given as 
 

45.0=fV  (volume fiber fraction) 
 

3/8.1 cmg=ρ  (density) 
 

)6.5(6.38 MPsiGPaEL =  
 

)20.1(27.8 MPsiGPaET =  
 

)60.0(14.4 MPsiGPaGLT =  
 

26.0=LTν  
 
Note that the fibers are orientated at 60o to the X coordinate axis. We determine the 
stresses in natural ( TL − ) coordinates by applying equation (5.1) 
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The strains in natural coordinates are easily obtained from equation (3.19) as given below 
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Failure theories for orthotropic lamina are generally defined in terms of the natural 
(material) coordinates and therefore it is essential in designing laminated composite 
structures to be able to apply the coordinate transformations as just demonstrated.  
 
It can be shown that strains in X-Y coordinates are related to strains in natural TL −  
coordinates through the transformation 
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    (5.26) 

 
Thus in the present example, the strains in X-Y coordinates are given as 
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6.0 BIAXIAL STRENGTH THEORIES FOR ORTHOTROPIC LAMINA 
 
For failure criteria to have validity, they must be able to predict the strength of materials 
under multi-axial loading conditions based on data obtained from a set of simplified 
loading tests. Failure criteria for isotropic materials are written in terms of principal 
stresses in combination with ultimate tensile, compressive and shear strengths.  Thus 
applying failure theories in the design of isotropic materials requires that these three 
strength quantities be known. 
 
The situation is considerably more complex in the case of orthotropic materials. For these 
engineered materials, both strength as well as stiffness (constitutive) properties are 
direction dependent. For design purposes, the failure theories are generally based on five 
in-plane strength quantities defined in natural (material) coordinates. These strength 
quantities are herein defined as 
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     LUσ  =  Longitudinal tensile strength (in the direction of fiber reinforcement) 
 
     TUσ  =  Transverse tensile strength (normal to the direction of fiber reinforcement) 
 
     LTUτ  = Shear strength in the plane of the lamina 
 
     LUσ ′  =  Longitudinal compressive strength 
 
     TUσ ′ =  Transverse compressive strength 
 
 
One of the failure theories presented later includes the transverse (out-of-plane) shear 
strength UTT ′τ  in the formulation even for the 2-D biaxial stress state considered here. 
There is also the possibility of utilizing an additional strength quantity based on 
experiments involving the application of a biaxial state of stress. 
   
The longitudinal and transverse stiffness and strength properties can be obtained through 
uniaxial testing of unidirectionally reinforced composite specimens. These tests involve 
loading specimens along natural (material) coordinates. Uniaxial tension testing serves to 
determine the longitudinal and transverse moduli LE and TE , tensile strength values LUσ  
and TUσ , as well as Poisson’s ratios LTν and TLν . Uniaxial compression tests are more 
difficult to perform than uniaxial tension tests because the test must be designed to 
prevent out of plane buckling and also to prevent edge damage. However, various test 
methods do exist to overcome these difficulties. Thus uniaxial compression testing is 
used to obtain the compressive strength values LUσ ′ and TUσ ′ . In-plane shear stiffness LTG  
and shear strength LTUτ values can be obtained from a number of different types of tests, 
including torsion tube [1], rail shear [2], Iosipescu [3,4], Arcan [5], o10 off-axis specimen 
[6] and o45± specimen [7]. As noted in [7], the o45±  specimen does not require any 
specialized fixtures and is therefore used often to determine the in-plane shear stress-
strain response of composite materials. The relevant test method is ASTM 
D3518/D3518M-94(2001) Standard Test Method for “In-Plane Shear Response of 
Polymer Matrix Composite Materials by Tensile Test of o45±  Laminate”. This standard 
test method is based on measuring the uniaxial stress-strain response of a o45±  laminate 
which is symmetrically laminated about the mid-plane. Obtaining shear stress/strain data 
using the 10o off-axis specimen requires that oblique end tabs be used in order to achieve 
a homogeneous strain field over the entire specimen [8-10]. 
 
 Since failure theories for composite materials involve strengths in material L-T 
coordinates, design calculations require transformation of the stress field from some X-Y 
coordinate system to L-T coordinates.  Failure criteria used in the design of composite 
materials are thus written in terms of stresses in material coordinates rather than in terms 
of principal stresses, as is the case for isotropic materials. 
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It may be obvious but is useful to point out that a uniaxial stress applied in any off-axis 
direction, i.e., not along a material axis, produces a multiaxial stress state in L-T 
coordinates. Therefore, an appropriate failure theory must be used even for this simple 
loading condition. Failure theories for orthotropic materials can be represented as 
theoretical failure envelopes in stress space. These failure envelopes are similar to yield 
surface envelopes used to represent the termination of linear elastic behavior for isotropic 
materials.  A number of strength (failure) theories, widely used in the design of fiber 
reinforced composite structures, will now be presented. These approaches can be broken 
into separable theories, i.e., those that can identify the mode of failure, and those that are 
more generalized in that they identify a failure limit but do not separate out or identify 
any particular failure mode. An estimation of the use of various failure criteria by people 
working in the composites design field has been reported, see Paris [11]. This estimation 
rated the relative utilization of the various criteria as follows: maximum strain 30% use; 
maximum stress 23% use; Tsai-Hill 18% use; Tsai-Wu 13% use; and all others 19% use. 
The maximum strain and maximum stress failure theories are herein denoted as separable 
failure theories, whereas the Tsai-Hill and Tsai-Wu failure theories are denoted as 
generalized failure theories. Two other failure theories to be presented herein, which are 
included in “all others” regarding their utilization by designers, are denoted the Hashin 
failure theory and the Chang failure theory. Each of these failure theories are defined as 
separable failure theories. It is interesting to note that in a review of research papers the 
majority of researchers base their proposals on variations of Hashin’s criteria [11]. 
 
6.1 Separable Strength (Failure) Theories 
 
6.1.1 Maximum Stress Theory 
 
In this theory the notion is that failure occurs if any of the stresses in the natural 
(material) coordinates exceeds the corresponding allowable stress. In order to avoid 
failure, the following inequalities must be satisfied 
 

LUL σσ <  
 

TUT σσ <   (6.1) 
 

LTULT ττ <  
 
When the normal stresses are compressive, LUσ  and TUσ  are replaced with the allowable 
compressive stresses as below 
 

LUL σσ ′<  
     (6.2) 

TUT σσ ′<  
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Note that in this failure criterion there is assumed to be no interaction between the axial 
and shear modes of failure. This over simplification can lead to an over prediction of 
allowable strength.  
 
As an example of applying this failure theory, consider the E-glass epoxy material of the 
previous example. The strength properties are given as 
 

)1.154(1062 KPsiMPaLU =σ  
 

)5.88(610 KPsiMPaLU =′σ  
 

)5.4(31 KPsiMPaTU =σ  
 

)1.17(118 KPsiMPaTU =′σ  
 

)45.10(72 KPsiMPaLTU =τ  
 
Consider an orthotropic lamina subjected to a stress Xσ  making an angle θ  with the 
longitudinal fiber direction as illustrated in the sketch below. 
 

 
 Figure 6.1.  Unidirectionally Loaded Lamina with Offset Angle θ  
 
The applied stress is transformed to material coordinates using equation (5.1), we have 
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Combining (6.3) with the maximum stress criteria represented in (6.1) and (6.2) gives the 
following inequalities, normalized by LUσ . 

θσ
σ

2cos
1

<
LU

X  

 

θσ
σ

σ
σ

2sinLU

TU

LU

X <     (6.4)    

 

θθσ
τ

σ
σ

cossinLU

LTU

LU

X <  

 
When the applied stress is compressive, the first two of these inequalities become 
 

θσ
σ

σ
σ

2cosLU

LU

LU

X ′
<  

      (6.5) 

θσ
σ

σ
σ

2sinLU

TU

LU

X ′
<  

 
For any particular value of θ , the inequality giving the lowest value of strength is the 
appropriate failure prediction. The off-axis strength predictions using the maximum stress 
criteria are plotted below for values of θ  ranging from 0o to 90o. The strength results are 
plotted in terms of normalized stress LUX σσ / .  
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Figure 6.2.  Normalized Stress LUX σσ /  Related to Off-Axis Angleθ , 

                 Maximum Stress Failure Theory 
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At small values of θ  the load is parallel or nearly parallel with the longitudinal fiber 
direction. The difference in tensile and compressive strengths at these low angles is 
attributable to different failure modes in tension and compression for this particular 
composite material. Failure in tension is characterized by fiber fracture while failure in 
compression is characterized by fiber micro-buckling. This result would not be the case 
for all composite materials and certainly would not be expected for isotropic materials. 
The difference in tensile and compressive strengths at large angles of θ  is again 
attributable to differences in tensile and compressive failure modes in the transverse (T) 
direction. Relatively low tensile strength in the transverse direction of a lamina (ply) is 
typical as the matrix material fractures with multiple cracks forming parallel to the fiber 
reinforcement. This effect is minimized in composite structures by stacking plies at 
varying angles to achieve quasi-isotropic behavior.  
 
6.1.2 Maximum Strain Theory 
 
This failure criterion states that failure occurs when strains in any of the natural (material) 
axes exceeds the corresponding allowable strain. Thus the following inequalities must be 
satisfied to avoid failure 
 

LUL εε <  
 

TUT εε <   (6.6) 
 

LTULT γγ <  
 
If the normal strains are compressive, then LUε  and TUε are replaced by the allowable 
compressive strains as below 
 

LUL εε ′<  
    (6.7) 

TUT εε ′<  
 
Again consider an orthotropic lamina subjected to a stress Xσ  making an angle θ  with 
the longitudinal fiber direction (see Figure 6.1). Substituting values for the stresses in 
material coordinates into the compliance equations (3.19) yields the following. 
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Carrying out the matrix multiplication and combining with the maximum strain criteria 
gives the following inequalities. 
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If we assume that the material behavior is linear elastic to failure, these inequalities can 
be simplified by substituting  
 

LULLU E εσ =  
 

TUTTU E εσ =      (6.10) 
 

LTULTLTU G γτ =  
 
Thus, in this example, the maximum strain criteria given in (6.9) reduces to 
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When the applied stress Xσ  is compressive, the first of these two inequalities are 
modified by replacing the tensile strength values with their corresponding compressive 
strength values. The third inequality in (6.11) remains unchanged as it involves the limit 
on shear strain which is unaffected by whether or not the loading is tensile or 
compressive. The maximum strain criteria for compressive loads becomes 
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Comparing the maximum strain criteria to the maximum stress criteria, we see that the 
criteria look identical except for the Poisson’s ratio terms. Therefore the differences in 
the failure predictions of these two theories are minimal. It should be noted, however, 
that if the composite material does not behave linearly elastic to failure then the 
predictions can be quite different. 
 
Considering the same E-glass epoxy lamina, again for any particular value of θ , the 
inequality giving the lowest value of strength is the appropriate failure prediction. The 
off-axis strength predictions using the maximum strain criteria are plotted below for 
values of θ  ranging from 0o to 90o. The strength results are again plotted in terms of 
normalized stress LUX σσ / .  
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Figure 6.3.  Normalized Stress LUX σσ /  Related to Off-Axis Angleθ , 

          Maximum Strain Failure Theory 
 
The results in this case are virtually identical to those obtained using the maximum stress 
criteria. 
 
6.1.3 Hashin Quadratic Theory 
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As a third example of a separable failure criteria, consider the quadratic strength theory 
as developed by Hashin [12]. In this criteria, there is coupling between extensional and 
shear modes of failure. 
  
It is not uncommon in applying Hashin’s failure theory to replace the transverse (out-of-
plane) shear strength UTT ′τ  with the in-plane shear strength value LTUτ . This assumption 
modifies Hashin’s compressive matrix failure prediction. This is to some extent due to 
the difficulty in experimentally quantifying the transverse shear strength. Also there is 
some question as to the logic of including an out-of-plane strength term in a two 
dimensional plane stress formulation. In any event, there is a certain compensation of 
errors in replacing UTT ′τ  with LTUτ  in Hashin’s 2-D formulation [11]. 
 
Hashin based his formulation on logical reasoning rather than micromechanics. This 
criteria has been successfully applied to progressive failure analysis of varying laminate 
ply lay-ups by using in-situ unidirectional strengths [13]. Use of in-situ strengths 
provides a method to account for the constraining interactions between plies.    
 
The governing equations are listed below for a biaxial state of stress.   
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Fiber Mode (Compression) 
 

LUL σσ ′<    (6.14) (same as maximum stress criteria) 
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Matrix Mode (Compression) 
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Again consider an orthotropic lamina subjected to a stress Xσ  making an angle θ  with 
the longitudinal fiber direction (see Figure 6.1). Assuming that LTUUTT ττ =′ and using the 
same E-glass epoxy properties, the inequality giving the lowest value of strength is the 
appropriate failure prediction.  
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Substituting stresses in material ( LT ) coordinates from (6.3) into (6.13) gives 
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Rearranging yields the normalized stress for the tensile fiber failure mode as 
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For the compressive fiber failure mode, we have the equivalent of the maximum stress 
criteria. This constraint is written as 
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Substituting the stresses into (6.15) gives the criteria for tensile matrix failure as 
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Solving for the normalized stress gives 
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Finally, for the compressive matrix failure mode in this example we have from (6.16)  
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As can be seen, (6.22) is a quadratic equation which can be solved for LUX σσ . Again 
note that the inequality giving the lowest value of strength is the appropriate failure 
prediction. Results are plotted below for the E-glass epoxy lamina. The Hashin quadratic 
criteria is compared to results previously obtained using the maximum stress criteria. It 
can be observed that the failure predictions are in close agreement for applied 
compressive stresses, however the maximum stress theory over predicts strength in this 
example when the applied stresses are tensile in nature.    
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  Figure 6.4.   Normalized Stress LUX σσ /  Related to Off-Axis Angleθ , 
                    Hashin Quadratic vs. Maximum Stress Failure Theories 

There is evidence that when a composite is subjected to a combined LTT τσ ,  loading, it 
becomes stronger when Tσ  is compressive. This implies that the in-plane shear stress 

LTτ  at failure corresponding to oT σσ −=  is appreciably greater than the shear stress LTτ  
at failure corresponding to oT σσ +=  [14]. Sun et al. [15] proposed an empirical 
modification to the failure criteria proposed by Hashin in 1973 [16] for matrix 
compression failure to account for the beneficial role that compressive Tσ  has on matrix 
shear strength. This modification is written as: 

Matrix Mode (Compression) 
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  (6.23) 

 
In this expression, η  is an experimentally determined constant and can be thought of as 
an internal material friction parameter. The denominator in the shear stress term is 
effectively an in-plane shear strength term that increases with the transverse compressive 
stress Tσ . This modification to Hashin’s criteria for compressive matrix failure is not 
pursued further here due to the added complexity required to experimentally determine 
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the friction parameterη . For additional insight into this particular modification to 
Hashin’s criteria and into other alternative criteria requiring more extensive 
experimentation see [11,13,14]. 
 
6.1.4 Chang Quadratic Theory 
 
As a fourth and final example of a separable failure criteria, consider the quadratic theory 
as developed by Chang et al. [17-18]. Actually the Chang criteria presented here evolves 
from the references cited and is the version used in the finite element based computer 
code MSC Dytran, see [11]. This criteria is a modification to Hashin’s criteria and 
therefore couples the extensional and shear modes of failure. The governing equations are 
listed below for the biaxial state of plane stress. 
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Matrix Mode (Tension) 
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In these expressions, the quantity T takes the form 
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Here α  is an experimentally defined coefficient used to represent the nonlinear in-plane 
shear strain-stress behavior as represented below. 
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Observe that for 0=α these failure criteria reduce to Hashin’s criteria except that the in-
plane shear strength LTUτ replaces the transverse (out-of-plane) shear strength UTT ′τ . 
Furthermore, for shear dominated failures where LTτ is the dominant stress and 

LTULT ττ → the Chang criteria again reduces to the Hashin criteria. 
 
As before consider an orthotropic lamina subjected to a stress Xσ  making an angle θ  
with the longitudinal fiber direction (see Figure 6.1). Using the same E-glass epoxy 
properties, the inequality giving the lowest value of strength provides the appropriate 
failure prediction.  
 
Substituting stresses in material ( LT ) coordinates from (6.3) into (6.24) gives 
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For )(θT  we have the following. 
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Rearranging (6.29) yields the normalized stress for the tensile fiber failure mode as 
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Substituting the stresses into (6.25) gives the criteria for tensile matrix failure as 
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and solving for the normalized stress gives 
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Finally, for the compressive matrix failure mode in this example we have from (6.26)  
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Clearly (6.34) is a quadratic equation which can be solved for LUX σσ . Again note that 
the inequality giving the lowest value of strength is the appropriate failure prediction.  
 
Results are plotted below for the Chang quadratic criteria and are compared to the results 
previously obtained using the Hashin criteria. The coefficient α  is based on a least 
squares fit to experimental data obtained for E-glass epoxy [7]. Note that compressive 
fiber failure is not considered by the Chang failure criteria. Thus for small values of θ  
(less than 6o in this example), the Chang criteria makes no valid prediction and the 
limiting failure curve for compressive loading is simply cut off for small values of θ . In 
this particular example, the Chang and Hashin criteria are in close agreement. However, 
it should be noted that while all of the failure criteria under consideration can be 
implemented in a material nonlinear analysis, nonlinear material behavior is explicit in 
the Chang criteria due to the representation of shear behavior in (6.28). Thus the results 
obtained in this example with the Chang criteria are oversimplified because the results 
are based simply on a linear analysis using classical lamination theory. 
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Figure 6.5.   Normalized Stress LUX σσ /  Related to Off-Axis Angleθ , 

                    Hashin Quadratic vs. Chang Quadratic Failure Theories 
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6.2 Generalized Strength (Failure) Theories 
 
6.2.1 Tsai-Hill Theory 
 
A failure theory for anisotropic materials was proposed by Hill [19]. The theory as 
proposed is actually a yield criteria but in the context of composite materials the yield 
strengths are treated as limits on linear elastic behavior. Therefore Hill’s yield strengths 
are treated herein as failure strengths. Hill’s yield criteria is an extension of the well 
known and much applied von Mises yield criteria for isotropic materials. The von Mises 
criteria is related to distortional strain energy and not to dilatation (change in volume). In 
the case of orthotropic materials distortional and dilatational effects can not be separated, 
thus this theory as applied to composite materials is not a distortional energy theory. 
 
The failure strength parameters in Hill’s theory were first related to the failure strengths 
of an orthotropic lamina by Tsai [20]. Thus this failure theory for orthotropic lamina is 
referred to as the Tsai-Hill theory. It is also referred to as the maximum work theory. 
Experimental support for this theory has been demonstrated by several authors, e.g., [21]. 
 
Hill’s criteria for yielding of anisotropic materials has the form 
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The failure strength parameters can be related to the usual failure strengths by 
considering the separate application of simple stress states. Consider first that LTτ acts 
alone. Based on the criteria in (6.35) this gives 
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If Lσ acts alone we have 
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When Tσ acts alone, criteria (6.35) gives 
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Combining the above three equations provides definition of three strength parameters. 
These parameters are given as 
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For the biaxial (plane) stress state of interest we can assume that the through-the-
thickness of the lamina stresses are essentially zero. This gives 
 

0=== ′′′ TTTLT ττσ    (6.38) 
 
If we consider the cross section of a typical lamina (ply) as depicted in the sketch below 
 

 
 

Figure 6.6.   Cross Section of Unidirectional Lamina  
          With Fibers in L Direction 

 
and simply consider the geometrical symmetry, it is concluded that 
 

TUUT σσ =′   (6.39) 
 
Substituting (6.38) and (6.39) into (6.37) gives 
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Rearranging the strength parameters in (6.40) yields 
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Substituting the strength parameters into (6.35) gives the Tsai-Hill failure theory for the 
case of biaxial (plane) stress. Failure is initiated when the inequality below is violated. 
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When normal stresses are compressive, the tensile strengths are replaced with 
compressive strengths. It is interesting to see that the Tsai-Hill theory reduces to the von 
Mises theory for isotropic materials by making the following substitutions 
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where 1σ  and 2σ  are the principal stresses for the isotropic material and Yσ the yield 
strength. For an isotropic material, (6.43) then reduces to the von Mises yield criteria as 
below 
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The Tsai-Hill failure theory given in (6.43) provides a single function to predict strength.  
 
Again consider the same example of an E-glass epoxy (angled ply) lamina with stress 

Xσ applied (see Figure 6.1). Substituting the stresses in natural (material) coordinates 
into (6.43) in this example yields the following for the case of tensile loading 
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A similar expression is obtained for the case of compressive loading  
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    (6.47) 

 
For plotting purposes, these equations can be written in the general form 
 

),,,,( TULULTUTULU
LU

X f σστσσ
σ
σ ′′<   (6.48) 

 
The off-axis strength predictions using the Tsai-Hill criteria are compared to the 
maximum stress criteria for values of θ  ranging from 0o to 90o. The strength results are 
again plotted in terms of normalized stress LUX σσ / .  
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Figure 6.7. Normalized Stress LUX σσ /  Related to Off-Axis Angleθ , 

         Tsai-Hill vs. Max. Stress Failure Theories 
 
The Tsai-Hill theory predicts lower strengths than those predicted by the maximum stress 
theory and has been shown to be in better agreement with experimental data than those 
results obtained using either the maximum stress or maximum strain theory [9]. One 
reason for the better agreement with experiments is the fact that there is considerable 
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interaction between the failure strengths ),,( LTUTULU τσσ in the Tsai-Hill criteria. This 
interaction does not exist for either the maximum stress or maximum strain criteria, i.e., 
in the latter two theories, axial, transverse and shear failures are assumed to occur 
independently.  
 
In this example of applying Xσ  to an angle ply with θ  ranging from 0o to 90o, the Tsai-
Hill and Hashin quadratic strength theories are in close agreement when the applied stress 
state is tensile, as shown in Figure 6.8 below. This is primarily because these strength 
theories each exhibit coupling between axial and shear deformation under a tensile stress 
state. For a compressive stress state, the Hashin criteria is more similar to the maximum 
stress criteria, particularly for low values ofθ .  
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Figure 6.8. Normalized Stress LUX σσ /  Related to Off-Axis Angleθ , 

                               Tsai-Hill vs. Hashin Quadratic Failure Theories 
 
 
6.2.2 Tsai-Wu Tensor Theory 
 
A way to theoretically improve the correlation between theory and experiment for 
strength theories is to increase the number of terms, particularly with respect to terms 
relating to the interaction between stresses in two directions. Tsai and Wu [22] 
accomplished this objective in their tensor strength theory for composites. They 
postulated a failure surface in stress space of the form 
 

1=+ jiijii FF σσσ ;     i,j = 1,6  (6.49) 
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wherein iF  and ijF  are strength tensors of the second and fourth rank. The usual 
contracted stress notation is used, i.e., TT ′= τσ 4 ,  LT ′= τσ 5 and LTτσ =6 . For the case of 
an orthotropic lamina under plane stress conditions, (6.49) reduces to the form 
 

12 12
2

66
2

22
2

11621 =++++++ TLLTTLLTTL FFFFFFF σστσστσσ   (6.50) 
 
The linear strength constants serve to represent different strengths in tension and 
compression. Quadratic strength constants provide the representation of an ellipsoid in 
stress space. The 12F  term is the basis for representing the interaction between the normal 
stresses in material coordinates. The ability to represent the interaction between Lσ  and 

Tσ provides more generality than achieved with the Tsai-Hill theory. Of course, more 
experimental data is required in that some tests are needed with the application of either 
biaxial stresses or an off-axis uniaxial stress. 
 
All of the strength constants in equation (6.50), except for the interaction term 12F , can be 
defined on the basis of simple uniaxial or pure shear testing. Note that all of the strength 
quantities, including LUσ ′  and TUσ ′ , are treated as positive quantities in the following 
equations.  
 
First consider the case where the only nonzero stress is 0≠Lσ . Loading the uniaxial 
specimen to failure gives 
 

12
111 =+ LULU FF σσ   (tension) 

 
12

111 =′+′ LULU FF σσ   (compression) 
 
Then solving for the strength constants yields 
 

LULU

F
σσ ′

−=
11

1  

    (6.51) 

LULU

F
σσ ′

=
1

11  

 
Similarly, applying the only nonzero stress Tσ to a uniaxial test specimen until failure 
gives 
 

12
222 =+ TUTU FF σσ    (tension) 

 
12

222 =′+′ TUTU FF σσ   (compression) 
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Solving for the strength constants 
 

TUTU

F
σσ ′

−=
11

2  

     (6.52) 

TUTU

F
σσ ′

=
1

22  

 
Applying pure shear LTτ  in material coordinates gives the following 
 

06 =F   (because sign of shear not important in LT coordinates) 
 

12
66 =LTUF τ   

 
or 

 266
1

LTU

F
τ

=    (6.53) 

 
The remaining interactive term 12F  can be determined based on the performance of 
biaxial stress tests. For example, consider the biaxial stress state σσσ == TL  and other 
stresses zero. Here, σ  is the biaxial stress required to produce failure in the specimen. 
Substituting into (6.50) gives 
 

( ) ( ) 12 2
12221121 =++++ σσ FFFFF  

 
Solving this equation for the interactive term gives 
 

( )2
21212 1

2
1 σσ
σ

CCF −−=   (6.54) 

where 
 

TUTULULU

C
σσσσ ′

−+
′

−=
1111

1  

and 

TUTULULU

C
σσσσ ′

+
′

=
11

2  

 
Thus the interactive 12F  term depends on the engineering strengths in the L and T 
directions as well as on the biaxial tensile failure strengthσ . Note that off-axis uniaxial 
tests could be used as an alternative to determining the interactive 12F term. 
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Due to a finiteness constraint imposed on the stress state, the strength constants in the 
Tsai-Wu governing equation (6.50) for a two dimensional stress state can be shown to 
satisfy the following inequality 
 

2211122211 FFFFF <<−   (6.55) 
 
In practice, this inequality can be used to estimate a value for 12F  in lieu of performing 
biaxial or off-axis tests. 
 
The Tsai-Wu theory is obviously more general than the Tsai-Hill theory in that the 
interactive term involves biaxial stress test results. Pipes and Cole obtained excellent 
agreement between the Tsai-Wu tensor theory and experimental data for boron/epoxy 
specimens, see [23]. In their tests, the Tsai-Wu and Tsai-Hill predicted strengths were in 
close agreement. 
 
As one approach in theoretically specifying the interactive strength term 12F , consider 
normalizing the governing Tsai-Wu equation (6.50) in the following manner. Define 
normalized stress and strength terms as below 
 

LL F σσ 11
* =  

 

TT F σσ 22
* =  

 

LTLT F ττ 66
* =  

      (6.56) 

11

1*
1 F

F
F =  

 

22

2*
2 F

F
F =  

 

2
1

2211

12*
12 −==

FF
F

F  

 
Substituting these forms into (6.50) yields a particular normalized form of the governing 
Tsai-Wu strength criteria as given here 
 

1**
2

**
1

2*2***2* =++++− TLLTTTLL FF σστσσσσ   (6.57) 
 



www.PDHcenter.com                                   PDH Course M372                                  www.PDHonline.org 
 

©2010 John J. Engblom                                                                                             Page 46 of 90 

Here the linear terms determine the center of the ellipsoidal failure surface. For the case 
of zero shear ( 0=LTτ ) equation (6.57) is a generalization of the von Mises criteria. The 
von Mises criteria can be written as  
 

12***2* =+− TTLL σσσσ    (6.58) 
 
This is an approach that has been suggested by Tsai and Hahn [25] to theoretically define 
the interactive strength term 12F  as an alternative to biaxial or off-axis strength testing. 
 
In order to again consider the E-glass epoxy (angled ply) lamina with stress Xσ applied 
(see Figure 6.1), consider writing the Tsai-Wu criteria in the following normalized form. 
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The applied stress Xσ  is transformed to material coordinates as given in equation (6.3). 
Substituting these stresses into (6.59) and using the theoretical assumption for the 
interactive strength term 12F  from (6.56) gives 
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   (6.60) 

 

This is a quadratic equation which can be solved for 
LU

X

σ
σ

 as a function ofθ . Writing the 

quadratic equation in the form 
 

02

2

=++ CBA
LU

X

LU

X

σ
σ

σ
σ

  (6.61) 

 
 
The coefficients in this quadratic form can be defined as follows 
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  (6.51) 

 
  1−=C   (6.52) 
 
The off-axis strength predictions using the Tsai-Wu criteria are compared to the Tsai-Hill 
criteria for values of θ  ranging from 0o to 90o. The strength results are again plotted in 
terms of normalized stress LUX σσ / . These results are plotted for interactive strength term 

values ( *
12F ) of +1/2 and -1/2 in order to show the sensitivity of the results to variation in 

the interactive strength term. Note that *
12F =-1/2 is the theoretical assumption used in 

writing equation (6.48) above and is also the assumption suggested by Tsai and Hahn 
[24] in order to make the Tsai-Wu criteria look like a generalized form of the von Mises 
criteria. The off-axis results coming from the Tsai-Wu criteria are plotted vs. the Tsai-
Hill criteria below for the case of applied tensile stress. 
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Figure 6.9. Normalized Stress LUX σσ /  Related to Off-Axis Angleθ , 

                               Tsai-Wu vs. Tsai-Hill Failure Theories (Tension) 
 
It is observed in Figure 6.9 that the predicted strength results for the applied tensile stress 
are not sensitive to variation in the interactive strength term. Furthermore, the strengths 
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predicted by the Tsai-Wu criteria are in excellent agreement with those predicted by the 
Tsai-Hill criteria for the full range of off-axis angleθ .  
 
When the applied stress is compressive, the strength results are somewhat more sensitive 
to variation in the interactive strength term ( *

12F ) as observed in Figure 6.10 below. 
Again the Tsai-Wu and Tsai-Hill results compare favorably, however, the Tsai-Wu 
criteria predicts higher strength values for a range of off-axis angles away from the 0o and 
90o end points.  Overall, for the particular case of applying a uniaxial tensile or 
compressive stress to an off-axis specimen the Tsai-Wu and Tsai-Hill failure criteria are 
in reasonably good agreement.  
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Figure 6.10. Normalized Stress LUX σσ /  Related to Off-Axis Angleθ , 

                               Tsai-Wu vs. Tsai-Hill Failure Theories (Compression) 
 
 
6.3 Another Example Comparing Failure Theories 
 
As a further example of applying the various strength theories, consider again the biaxial 
state of stress used in the first example. The applied stress state is given as Xσ = 20 MPa, 

Yσ = 40 MPa, and XYτ  = 0. The fiber reinforcement (L axis) is oriented at =θ  60o with 
respect to the reference X axis. The stresses in natural (material) coordinates were 
previously calculated as Lσ  = 35 MPa, Tσ  = 25 MPa, and LTτ  = 8.66 MPa. Assuming 
the E-glass epoxy properties as previously defined, the results for each of the strength 
criteria are given below. 
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Max. Stress Criteria 
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Max. Strain Criteria 
 
Substituting the compliance relation (3.19) into the maximum strain criteria (6.6) and 
assuming linear elastic behavior to failure gives 
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again normalizing  
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normalizing gives  
 

11203.0 <=
LTU

LT

τ
τ  (same as for max. stress criteria in case of shear stress) 

 
Hashin Quadratic Criteria 
 
Substituting stresses and strengths into (6.13) and (6.15) respectively gives 
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Chang Quadratic Criteria 
 
Substituting stresses and strengths into (6.24) and (6.25) gives 
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Here, T as defined in (6.27) involves the  experimental coefficient α , see [7]. 
 
Tsai-Hill Criteria 
 
Substituting the stresses and strengths into (6.31) gives 
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Tsai-Wu Criteria 
 
Substituting into (6.47) and assuming the strength interaction term 2/1*

12 −=F gives 
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In this particular example, the Hashin and Chang criteria make a strength prediction 
virtually identical to that of the Tsai-Hill criteria. Separable failure criteria like Hashin 
and Chang have the advantage over generalized criteria like Tsai-Hill or Tsai-Wu of 
being able to separate out the most likely mode of failure. The ability to separate out 
failure modes is particularly important when incorporating failure criteria into nonlinear 
damage models. Here the maximum stress criteria predicts the smallest margin of safety. 
 
6.4  Failure Envelopes (Generalized Theories) for Biaxial Stress State 
 
 In the case of isotropic materials, closed failure envelopes (surfaces) can be defined for 
the general case of biaxial stresses. These failure or yield envelopes are defined in terms 
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of principal stress coordinates. A good example is the von Mises yield surface as 
previously defined in equation (6.45), which is represented as an ellipse in principal 
stress space. It is not possible in the case of an orthotropic lamina to define such a general 
graphical representation for the biaxial stresses TL σσ ,   and LTτ acting in the natural 
coordinate directions. This is because the principal stresses do not, in general, coincide 
with either a set of reference axes or the longitudinal and transverse directions. The 
principal stress directions align with the longitudinal and transverse directions only for 
the special case where 0=LTτ . Failure envelopes can be defined in terms of normalized 
stresses in natural coordinates, i.e., LUL σσ / and TUT σσ /  for a specified value of shear 
stress LTτ .  As the shear stress is increased, the failure envelopes shrink resulting in 
reduced feasible design space.  
 
Consider first the Tsai-Hill failure surface based on the E-glass properties used in 
previous examples. Because the Tsai-Hill strength criteria is adjusted to accommodate 
compressive stresses, the resulting closed failure surface is piecewise continuous in the 
normalized natural stress coordinate space. This failure surface is plotted below for the 
case of zero shear and the case of 5.0/ =LTULT ττ . The intercepts on the compressive 
stress axes differ from those on the tensile stress axes because LULU σσ ≠′  
and TUTU σσ ≠′ . In the case of zero shear stress, these intercepts occur at 

806.3=′= TUTUTUT σσσσ  and at 5744.0=′= LULULUL σσσσ . Adding shear stress 
reduces the feasible design space as anticipated. 
 
 

 
     Figure 6.11. Tsai-Hill Failure Surface Plotted in Normalized Natural Coordinate  

              Stress Space for E-Glass Epoxy Lamina ( =LTULT ττ  0 and 0.5) 
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The failure surface representation of the Tsai-Wu tensor criteria is simply an ellipse in 
these same natural stress coordinates, as shown in Figure 6.12 below.  This plot is based 
on assuming the interactive strength term 21*

12 −=F . Again, the addition of a shear 
stress component reduces the feasible design space. 
 
 

 
    Figure 6.12. Tsai-Wu Failure Surface Plotted in Normalized Natural Coordinate  

              Stress Space for E-Glass Epoxy Lamina ( =LTULT ττ  0 and 0.5) 
 
 
As with the Tsai-Hill criteria, the compressive stress axes intercepts occur at 

806.3=′= TUTUTUT σσσσ  and at 5744.0=′= LULULUL σσσσ  for zero shear stress. 
  
For this particular case of E-glass epoxy, the Tsai-Hill and Tsai-Wu failure surfaces are 
compared in Figure 6.13 below. Again in this graphical representation, the interactive 
strength term for the Tsai-Wu criteria is assumed to be 21*

12 −=F . 
 
Clearly the two failure criteria are in reasonable agreement in three quadrants but differ 
significantly in the fourth quadrant where both Lσ and Tσ are compressive. Remember 
that the interactive strength term has been assumed in this case rather than determined 
through experiment.  
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       Figure 6.13. Tsai-Hill vs. Tsai-Wu Failure Surfaces Compared for  

     E-Glass Epoxy Lamina ( =LTULT ττ  0) 
 
 
For the Tsai-Wu failure criteria, it is interesting to note that the interactive strength term 

*
12F governs both the slenderness ratio and inclination of the major elliptical axis. The 

major axis has an inclination of +45o for negative *
12F and -45o for positive *

12F . This 
effect of the interactive strength term is demonstrated in Figure 6.14 below for the E-
glass epoxy lamina under consideration. The Tsai-Wu failure surfaces are plotted for 

2/1*
12 −=F and 2/1*

12 +=F .  Remember that this negative value of *
12F is the value 

proposed [24] to make the Tsai-Wu criteria represent a generalized version of the von 
Mises failure criteria. Figure 6.15 compares the Tsai-Wu failure surface for interactive 
strength term values 21*

12 −=F and 41*
12 −=F  to the Tsai-Hill failure surface. 

 
It is observe in Figure 6.15 that varying the interactive strength term from -1/2 to -1/4 
brings the Tsai-Wu and Tsai-Hill failure predictions into better agreement in the fourth 
quadrant of natural stress space. Of course, these interactive strength term values are 
simply analytical assumptions. These results clearly demonstrate the importance of the 
interactive strength term in defining the Tsai-Wu failure surface, particularly when the 
natural stresses Lσ  and Tσ  are compressive. 
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    Figure 6.14. Tsai-Wu Failure Surface for E-Glass Epoxy Lamina With 

             Different Interactive Strength Terms ( =LTULT ττ  0) 
 

 

 
 
 
    Figure 6.15. Tsai-Wu vs. Tsai-Hill Failure Surfaces for E-Glass Epoxy 

             Lamina with Interactive Strength Terms ( =LTULT ττ  0) 
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6.5 Effect of Shear Stress Direction on Lamina Strength 
 
The shear strength of an orthotropic lamina is dependent on the direction of the shear 
stress when this stress is applied in reference axes different than the material (natural) 
coordinates. Consider reference axes at an angle of 45o to the natural coordinates as 
sketched below 
 

 
   Figure 6.16.  Shear Stress XYτ  Applied in XY Coordinates 

          at 45o to Natural LT Coordinates 
 
Application of the positive shear stress results in a compressive stress in the transverse 
(T) direction and tensile stress in the fiber (L) direction. Conversely, application of the 
negative shear stress results in tensile stress in the transverse (T) direction and 
compressive strength in the fiber (L) direction. Typically, TUTU σσ ′<  and LULU σσ <′ . 
Therefore, the lamina in this case is more likely to fail when the negative shear stress is 
applied. These results can be shown mathematically by going back to the transformation 
given in equation (5.1). This transformation from reference to natural coordinate stresses 
can be written in this case as below. 
 

[ ]
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

XYLT

T

L

T
ττ

σ
σ

0
0

 

 
For o45=θ , the stresses in natural coordinates for positive XYτ become 
 
  XYXYL τθτσ +=+= 2sin  
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XYXYT τθτσ −=−= 2sin  

02cos == θττ XYLT  
 
and the sign of these natural stresses reverse for negative XYτ . Again, the lamina is more 
susceptible to failure for the negatively applied shear stress in this case because of 
differences in strengths in the L and T directions. Thus off-axis shear strength of an 
orthotropic lamina depends not only on the fiber orientation but also on the direction of 
the applied shear stress. 
 
7.0 ANALYSIS OF LAMINATED (MULTI-LAYERED) COMPOSITES 
 
In a unidirectional composite, the ratio of longitudinal strength (or stiffness) to transverse 
strength (or stiffness) can be varied by changing the constituent materials and also by 
varying the volume fraction of fibers. Longitudinal behavior is controlled primarily by 
fiber properties while transverse behavior is matrix dominated. Generally the transverse 
properties of a unidirectional composite are unsatisfactory in most engineering 
applications. While this is an undesirable property of unidirectional composites in many 
instances, this characteristic is overcome by forming laminates from a number of 
unidirectional layers. A laminate is formed when two or more laminae (plies) are bonded 
together to act as an integral structure. Each lamina in the laminate has its material 
(natural) coordinate axes oriented at some desired off-set angle with respect to the 
reference coordinates. The intent is to achieve a set of desired properties in all directions.  
 
7.1 Specifying Stress and Strain Variation in a Laminate 
 
The bond between the laminae is assumed to provide continuity between neighboring 
plies, i.e., no slippage between plies occurs in an undamaged laminated structure. A 
relationship is needed to define strain as a function of displacement and curvature. 
Consider deforming a section of a laminate in the x-z plane as depicted in Figure 7.1 
below. Assume that face ABCD originally straight and perpendicular to the mid-plane of 
the laminate remains straight and perpendicular to the mid-plane after deformation. This 
assumption that plane sections remain plane and perpendicular to the mid-plane 
effectively assumes that the through-the-thickness shear deformations XZγ  and YZγ are 
negligible. This kinematic representation is referred to as the Kirchoff hypothesis and is 
normally a reasonable assumption for thin laminated composite plate and shell structures. 
The approach taken here is referred to as the classical lamination theory, for example see 
[25].  



www.PDHcenter.com                                   PDH Course M372                                  www.PDHonline.org 
 

©2010 John J. Engblom                                                                                             Page 57 of 90 

 
       Figure 7.1.  Bending of Laminate in X-Z Plane 

 
 
Assume that point B at the geometric mid-plane undergoes displacements oo vu , and 

ow along the x, y and z axes, respectively. It follows that displacement in the x direction 
at point C is given as  
 

βzuu o −=   (7.1) 
 
where β  is the slope of the laminate mid-plane in the x direction, i.e, 
 

x
wo

∂
∂

=β   (7.2) 

 
Substituting (7.2) into (7.1) gives an expression for displacement in the x direction as 
 

x
w

zuu o
o ∂

∂
−=  (7.3) 

 
Similar reasoning for displacement in the y direction at a geometric distance z from the 
mid-plane gives 
 

y
w

zvv o
o ∂

∂
−=  (7.4) 
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Displacement w in the z direction, normal to the laminate plane, is the displacement of 
the mid-plane ow  plus the stretching (or shortening) of the normal, i.e.  
 

+= oww  stretching (shortening) of normal 
 
It is assumed that this stretching (shortening) of the normal is negligible relative to the 
displacement ow . Thus the normal (through-the-thickness) strain Zε is neglected. This is a 
reasonable assumption for thin-walled composite structures. This assumption results in 
the interlaminar shear strains being zero. This result is shown by substituting (7.3) and 
the assumption that oww =  into the appropriate strain displacement relation. This gives 
 

0=
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

=
x

w
x

w
x
w

z
u oo

XZγ   

 
similarly 
 

 0=
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

=
y

w
y

w
y
w

z
v oo

YZγ  

 
and thus the nontrivial laminate strains reduce to ,, YX εε and XYγ . These strains are 
defined for the derived displacements as 
 

2

2

x
w

z
x
u

x
u oo

X ∂
∂

−
∂
∂

=
∂
∂

=ε  

 

2

2

y
v

z
y
v

y
v oo

Y ∂
∂

−
∂
∂

=
∂
∂

=ε     (7.5) 

 

yx
w

z
x
v

y
u

x
v

y
u ooo

XY ∂∂
∂

−
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=
2

2γ  

 
 
These relationships can be written in matrix form as the sum of mid-plane strains and 
plate curvatures.  
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

XY

Y

X

o
XY

o
Y

o
X

XY

Y

X

k
k
k

z
γ
ε
ε

γ
ε
ε

   (7.6) 

 
The mid-plane strains are written as below. 
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⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∂
∂

+
∂
∂

∂
∂
∂
∂

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

x
v

y
u

y
v
x
u

oo

o

o

o
XY

o
Y

o
X

γ
ε
ε

   (7.7) 

 
The plate curvatures are given as 
 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∂∂
∂
∂
∂
∂
∂

−=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

yx
w

y
w
x
w

k
k
k

o

o

o

XY

Y

X

2

2

2

2

2

2

    (7.8) 

 
Equation (7.6) represents a linear variation in strains through the thickness of the 
laminate. The laminate is comprised of a set of laminae and the stresses in any given 
lamina (ply), e.g. the kth, can be defined by substituting (7.6) into the stress-strain 
relationship (5.21). The result is written for the kth lamina(ply) as 
 

    
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

XY

Y

X

K
o
XY

o
Y

o
X

KKXY

Y

X

k
k
k

QQQ
QQQ
QQQ

z
QQQ
QQQ
QQQ

662616

262212

161211

662616

262212

161211

γ
ε
ε

τ
σ
σ

  (7.9) 

 
While the strain variation is linear through the thickness of the laminate, stress 
variation is not linear. The stress gradient varies from lamina to lamina and can differ for 
adjoining lamina. Furthermore, stresses are discontinuous at the interface of adjoining 
lamina. An example of the stress and strain variation through the thickness of a three ply 
laminate is shown in Figure 7.2 below. The differences in stiffness lead to differences in 
stress between adjoining lamina. 
 

 
Figure 7.2  Hypothetical Three-Ply Laminate with Stress, Strain Variation 
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7.2 Relating Resultant Forces and Moments to Strain and Curvature 
 
It is convenient to work with an equivalent system of forces and moments acting on the 
laminate cross section as shown in Figure 7.3.  
 

 
 

    Figure 7.3  Resultant Forces and Moments Acting on Laminate 
 
Resultant forces are obtained by integrating the appropriate stresses through the laminate 
thickness (h). These resultant forces have units of force per unit width and are written 
below for a laminate of thickness h. 
 

∫
−

=
2

2

h

h
XX dzN σ  

 

∫
−

=
2

2

h

h
YY dzN σ    (7.10) 

 

∫
−

=
2

2

h

h
XYXY dzN τ  

 
Resultant moments are obtained by integrating through the laminate thickness as with the 
forces, but in this case moment is obtained by multiplying stress by the moment arm with 
respect to the laminate mid-plane. These moments are defined as follows 
 

∫
−

=
2

2

h

h
XX zdzM σ  

 

∫
−

=
2

2

h

h
YY zdzM σ    (7.11) 
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∫
−

=
2

2

h

h
XYXY zdzM τ  

 
The positive sign convention for these resultant forces and moments is shown in Figure 
7.3. Note that the six force and moment resultants form a system that is statically 
equivalent to the stresses acting on the laminate. This resultant force/moment system acts 
at the geometric mid-plane of the laminate.  
 
The continuous integrals in (7.10) and (7.11) can be replaced by the summation of 
integrals over the n orthotropic laminae represented in Figure 7.4 below. 
 

 
Figure 7.4 Multi-layered Laminate Geometry with n Laminae (Plies)  

 
These summations have the matrix form 
 

{ } ∑ ∫
=

− ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

n

K

h

h
KXY

Y

X

XY

Y

X K

K

dz
N
N
N

N
1 1 τ

σ
σ

  (7.12) 

 
and 

{ } ∑ ∫
=

− ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

n

K

h

h
KXY

Y

X

XY

Y

X K

K

zdz
M
M
M

M
1 1 τ

σ
σ

  (7.13) 
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These resultant forces and moments can be related to mid-plane strains and plate 
curvatures by substituting (7.9) into (7.12) and (7.13). The resultant forces become 
 

[ ]∑ ∫ ∫
= ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

− −

n

K

h

h

h

h
XY

Y

X

o
XY

o
Y

o
X

K

XY

Y

X K

K

K

K

zdz
k
k
k

dzQ
N
N
N

1 1 1γ
ε
ε

  (7.14) 

 
or in simplified matrix notation 
 

[ ] [ ]
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
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Y

X

o
XY

o
Y

o
X

XY

Y

X

k
k
k

BA
N
N
N

γ
ε
ε

   (7.15) 

 
where the coefficients in [ ]A  and [ ]B  are defined as  
 

( ) ( )∑
=

−−=
n

K
KKKijij hhQA

1
1     (7.16) 

 

( ) ( )∑
=

−−=
n

K
KKKijij hhQB

1

2
1

2

2
1     (7.17) 

 
Similarly the resultant moments come from substituting (7.9) into (7.13). 
 

    [ ]∑ ∫ ∫
= ⎪

⎭

⎪
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⎩
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⎭
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o
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o
X

K
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Y

X K

K

K

K
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k
k
k
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M
M
M

1
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1 1γ
ε
ε

  (7.18) 

 
In simplified matrix notation the resultant moments become 
 

[ ] [ ]
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎪
⎭

⎪
⎬
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⎪
⎩

⎪
⎨

⎧

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
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Y

X

o
XY

o
Y

o
X

XY

Y

X

k
k
k

DB
M
M
M

γ
ε
ε

   (7.19) 

 
Here the coefficients in [ ]D  are defined as 
 

( ) ( )∑
=

−−=
n

K
KKKijij hhQD

1

3
1

3

3
1     (7.20) 

 
The total set of six constitutive equations for the laminated plate can be written in 
compact matrix form as 
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[ ]
[ ]

[ ] [ ]
[ ] [ ]

{ }
{ } ⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎭
⎬
⎫

⎩
⎨
⎧

kDB
BA

M
N oε

    (7.21) 

 
 
Here, [ ]A  is denoted the extensional stiffness matrix. [ ]B  is defined as the coupling 
stiffness matrix and [ ]D  is the bending stiffness matrix. The mid-plane strains and plate 
curvatures are defined as  
 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
o
XY

o
Y

o
X

o

γ
ε
ε

ε     (7.22) 

 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

XY

Y

X

k
k
k

k     (7.23) 

 
The extensional stiffness matrix [ ]A  relates the mid-plane strains { }oε  to the resultant in-
plane forces, while the bending stiffness matrix [ ]D  relates the plate curvatures { }k  to the 
resultant moments. Stretching a laminate with nonzero ijB  terms will result in bending 
and/or twisting of the laminate along with extensional and shear deformation. Note that 
coupling between the extension and bending/twisting of a laminate with nonzero ijB  is 
not caused by the orthotropy of the plies, but instead is due to nonsymmetric stacking of 
the laminate. Ashton et al [26] demonstrated the phenomenon of coupling between 
stretching and twisting by applying a simple axial load XN  to a two ply [ ]θ±  specimen. 
In their experiment the resultant axial load is related to strain and curvature as 
 

XY
o
Y

o
XX kBAAN 161211 ++= εε   

 
thus the application of axial load XN  produces twisting curvature XYk .  
 
The stiffness matrix relationship given in (7.21) provides a means of determining the 
laminate strains and curvatures for a set of applied forces and moments. Having 
determined strains and curvatures, the stresses can be calculated on a ply by ply basis 
from the constitutive equations given in (7.9). These stresses in reference XY coordinates 
can then be transformed to natural coordinates for each ply by applying the coordinate 
transformation given in (5.1). Any of the failure theories can be applied in each ply to 
determine the factor of safety for the laminate. 
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7.3 Including Hygrothermal Effects in Laminate Analysis 
 
Thermal and hygroscopic strains can occur in a body due to temperature and hygroscopic 
(moisture) changes. Thermal strain in an isotropic material is defined as the product of 
the thermal coefficient of expansion α  and the change in temperature TΔ . Similarly, the 
hygroscopic strain is defined as the product of the coefficient of moisture expansion β  
and the change in moisture content CΔ . These strains are written as 
 

TT Δ= αε   (7.24)  
 

CH Δ= βε   (7.25) 
 
For orthotropic materials, the coefficients of thermal and moisture expansion are 
directionally dependent as is the case for other constitutive properties. Therefore, changes 
in temperature and/or moisture produce differences in the longitudinal (along the fiber 
reinforcement) and transverse strains (perpendicular to fibers). The thermal strains in the 
longitudinal and transverse directions are defined as 
 

TL
T
L Δ= αε  

     (7.26) 
TT

T
T Δ= αε  

 
Here Lα  and Tα  represent the thermal coefficients of expansion in the longitudinal and 
transverse directions, respectively. Similarly, the hygroscopic strains are given as 
 

CL
H
L Δ= βε  

     (7.27) 
CT

H
T Δ= βε  

 
Here Lβ  and Tβ represent the moisture expansion coefficients in the longitudinal and 
transverse directions, respectively. 
 
Total strains can be defined as the sum of the elastic (mechanical) strains and the 
hygrothermal strains. These strains are written in concise matrix form as below 
 
 

{ } { } { } ALHYGROTHERMELASTICTOTAL εεε +=  (7.28) 
 
 
Rearranging the above, the elastic (mechanical) strains in reference coordinates can be 
equated to the total strains minus the thermal and hygroscopic strains. The mechanical 
strains are then given as 
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T
X
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Y

X

M
Z

M
Y

M
X

ε
ε
ε

ε
ε
ε

ε
ε
ε

ε
ε
ε

  (7.28) 

 
A simple 1-D analogy of the above matrix equation consists of an axial bar constrained at 
its ends and subjected to an increase in temperature. Assuming the bar is made of an 
isotropic material, the thermal stress is calculated as  
 

TTOTALELASTIC Δ−= αεε  
 
or from Hooke’s law 
 

T
E

Δ−= α
σ 0  

 
and finally 
 

TEΔ−= ασ  
 
for the constrained axial bar. The same basic approach can be used to calculate 
stresses/strains in orthotropic laminates subjected to hygrothermal effects. 
 
Coefficients of thermal and moisture expansion can be transformed from natural LT 
coordinates to the reference XY coordinates for the laminate by the following 
transformation 
 

[ ]
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
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⎭
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⎨
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Y

X
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α

α
α
α

  (7.29) 

 
and 
 

[ ]
⎪
⎭

⎪
⎬

⎫

⎪
⎩
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⎧
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⎪
⎭

⎪
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⎪
⎩
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⎨

⎧
−
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T

L
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Y

X
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β

β
β
β

  (7.30) 

 
 
Coordinate transformation [ 1−T ] has been previously defined in equation (5.6). 
Expanding (7.29) gives definition of the thermal coefficients of expansion in reference 
coordinates for a given ply at off-set angle θ  as 
 
 



www.PDHcenter.com                                   PDH Course M372                                  www.PDHonline.org 
 

©2010 John J. Engblom                                                                                             Page 66 of 90 

( ) ( ) TLX αθαθα 22 sincos +=  
 

( ) ( ) TLY αθαθα 22 cossin +=     (7.31) 
 

( ) ( ) ( ) ( ) TLXY αθθαθθα cossin2cossin2 −=  
 
Of course, the moisture expansion coefficients in reference coordinates can be similarly 
defined by expanding (7.30). 
 
With the expansion coefficients defined in reference coordinates, the thermal and 
hygroscopic strains can be defined as below 
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and 
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Substituting (7.6), (7.32) and (7.33) into (7.28) provides definition of the mechanical 
(elastic) strains in terms of total mid-plane strains, total plate curvatures and change in 
temperature and moisture. This matrix equation takes the form 
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Based on matrix equation (5.21) the lamina hygrothermal stresses can be written as 
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Substituting (7.34) into (7.35) provides definition of the hygrothermal stresses at the 
lamina (ply) level as 
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This matrix equation must be solved for the total mid-plane strains and curvatures caused 
by hygrothermal effects. This is accomplished by first substituting (7.36) into (7.12) and 
assuming there are no applied loads. We have 
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In order to simplify the above equation and provide a form amenable to solution, define 
the apparent hygrothermal forces as below 
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Matrix equation (7.37) can now be written in the form 
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Note that (7.40) has the exact matrix form of (7.15) except that the loads on the left hand 
side of the equation are now the apparent hygrothermal loads instead of the applied 
external loads. 
 
To complete the equation set required for solution, substitute (7.36) into (7.13) and 
assume there are no applied moments. This gives 
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Similar to the approach in defining the apparent hygrothermal forces, now define the 
apparent hygrothermal moments as below 
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Matrix equation (7.41) can now be written as  
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Note that (7.44) has the same matrix form as (7.19) except that apparent hygrothermal 
moments replace the applied external moments. 
 
It is clear that the applied external loads can be combined with the apparent hygrothermal 
loads as  
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and the applied external moments can be combined with the apparent hygrothermal 
moments as 
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The governing matrix equation to be solved for the mid-plane strains and curvatures is 
again (7.21) and repeated below 
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Here the loads and moments on the left hand side of the equation can contain externally 
applied loads/moments as well as apparent hygrothermal loads/moments. 
 
The stiffness matrix relationship (7.21) is solved for the total mid-plane strains and 
laminate curvatures. These values are then substituted into (7.34) to determine the 
mechanical (elastic) strains in each lamina (ply). Stresses are determined in each ply from 
the constitutive equations (5.21) 
 
Whenever the hygrothermal state of a laminate differs from its stress-free state, 
hygrothermal stresses are induced in the laminae (plies) making up the laminate. An 
example of such effects occurs due to fabrication of composite laminates. Thermal 
stresses are induced while cooling the laminate down from the extreme fabrication 
temperatures to room temperature. These thermal stresses can be thought of as residual 
stresses or curing stresses. They are brought about because of differences in thermal 
coefficient expansion and the stacking sequence of the laminate.   An autoclave cure 
cycle is shown in Figure 7.5 to indicate the temperature extremes that might be expected 
during fabrication of a composite laminate.  
 

 
Figure 7.5  Typical Autoclave Thermoset Cure Cycle for Laminate   
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Such residual thermal stresses should be considered as part of the design process as they 
may be nontrivial.  
 
For any general unsymmetric laminate, based on equations (7.40) and (7.44), any 
hygrothermal change in temperature or moisture will induce not only extensional strains 
but also warping of the laminate as exhibited by the existence of plate curvatures{ }k . 
This is not the case for symmetric laminates for which the coupling stiffness matrix [ ]B  
is identically zero. Furthermore, the hygrothermal moments as defined in (7.42) and 
(7.43) are also zero for symmetric laminates. Therefore there is no significant 
hygrothermal warpage of symmetric laminates during the fabrication process. 
 
Stresses induced at the fiber-matrix interface, due to the fabrication process, are generally 
beneficial to shear transfer between the fiber and matrix material. These internal stresses 
can be calculated through micromechanics analysis and are beyond the scope of the 
laminate analysis presented here.   
 
It is noted and should be obvious that hygrothermal effects may be caused by many 
factors in the design environment other than those occurring during the fabrication 
process. In such cases, these hygrothermal effects can be combined with applied loads as 
discussed and included in the analysis when solving (7.21) for strains and curvatures and 
ultimately for stresses at the ply level.   
 
7.4 Construction and Properties of Various Laminates 
 
Derivation of the laminate stiffness matrices is based on summing the effects of the 
stiffness matrices [Q ]K over each ply (lamina). When the laminate is comprised of a 
number of orthotropic lamina stacked at arbitrary off-set angles θ  then the laminate 
stiffness matrices are generally fully populated with non-zero terms. This result often 
leads to undesirable coupling between bending or twisting and extension. Therefore 
laminates with arbitrary stacking sequences usually exhibit unwanted stresses and/or 
deformation. It is common design practice to specify laminate stacking sequences that 
result in a number of the laminate stiffness terms being zero. Thus there are special 
laminate constructions that eliminate undesirable coupling effects.  
 
A laminate orientation code is required to specify (1) the orientation of each ply with 
respect to a reference axis, (2)   the number of plies making up the laminate and (3) the 
stacking sequence of the plies. The stacking sequence is enclosed in brackets. With this 
code, each ply is denoted by an angle θ±  and separated from neighboring plies with a 
slash. Plies are listed in a stacking sequence from one laminate face to the other. 
Furthermore, adjacent plies of the same orientation are denoted by a numerical subscript. 
Laminates which exhibit symmetry about the geometric mid-plane require that only half 
of the stacking sequence be specified. For these symmetric laminates, plies are defined 
from one laminate face to the mid-plane and the bracketed stacking sequence includes a 
subscript S to denote that only half of the laminate is presented, i.e., with the other half 
symmetric about the mid-plane.  
 



www.PDHcenter.com                                   PDH Course M372                                  www.PDHonline.org 
 

©2010 John J. Engblom                                                                                             Page 71 of 90 

To illustrate this laminate orientation code, here are two simple examples of laminates. 
The first laminate is defined as [ 0/30/45 m± ] where starting at the top face of the 
laminate the ply stacking sequence has the order +45o, -45o, -30o, +30o, 0o. A second 
laminate with symmetry about its geometric mid-plane is defined as [ 90/0/45 2 ]S. This 
symmetric laminate has the following ply stacking sequence order +45o, 0o, 0o, 90o, 90o, 
0o, 0o, +45o.  
 
Note that a symmetric laminate with an odd number of plies would be coded as a 
symmetric laminate except that the center ply would be over-scored. It is also useful to 
define sets as repeating sequences of plies. Sets are enclosed in parenthesis and adhere to 
the same rules as applied to an individual ply. A simple example of a laminate with 
repeating sets might be defined as [ 2)90/0/45( ]S. Here the stacking sequence 
represented has the order +45o, 0o, 90o, +45o, 0o, 90o, 90o, 0o, 45o, 90o, 0o, +45o.  
 
When identifying hybrid laminates the laminate orientation code is somewhat modified. 
Hybrid laminates have plies made up from more than one type of fiber reinforced 
material. Thus the orientation code for hybrids must include with each ply angle a 
subscript defining ply material. 
 
7.4.1 Symmetric Laminates 
 
Laminate analysis is greatly simplified if the coupling stiffness matrix [ B ] is identically 
zero. Furthermore, this eliminates undesirable coupling between bending or twisting and 
extension. Contribution of a ply above the geometric mid-plane of the laminate is 
nullified by an identical ply, i.e., same stiffness properties and off-set angle, equally 
distant below the mid-plane. Each kth lamina contributes to particular terms in the 
coupling stiffness as terms in [ Q ]K  multiplied by the squares of the z coordinates of the 
top and bottom of each ply. Consider a ply above and a ply below the mid-plane each 
with identical stiffness properties and equidistant from the mid-plane. Considering these 
particular lamina, the contribution of a particular term to the coupling stiffness would 
appear as below 
 

)()( 2
2

1
2

1
2

2
2

−−++ −+−= KKijKKijij hhQhhQB  
 
From symmetry, 2

2
2

2 −+ = KK hh  and 2
1

2
1 −+ = KK hh . Therefore  

 
0)0( == ijij QB  

 
Thus the coupling stiffness matrix [ B ] is identically zero for symmetric laminates. 
  
7.4.2 Unidirectional, Cross-Ply and Angle-Ply Laminates 
 
It is possible to have a laminate act as a specially orthotropic layer with respect to in-
plane forces and strains. For such laminates there is no coupling between normal stresses 
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(or forces) and shear strain. This laminate characteristic requires that 02616 == AA  in the 
extensional stiffness matrix. The 16Q and 26Q  terms from (5.24) are rewritten below  
 
    θθθθ 3

661222
3

66121116 sincos)2(sincos)2( QQQQQQQ −−−−−=  
            (7.47) 
    θθθθ sincos)2(sincos)2( 3

661222
3

66121126 QQQQQQQ −−−−−=  
 
For cross-ply laminates all plies have reinforcing fibers at either 0o or 90o off-set angles 
with respect to the reference XY coordinate system. Of course, unidirectional laminates 
have all reinforcement oriented along the 0o reference coordinate direction. For these 
special laminates it easily follows from (7.47) that 16Q  and 26Q  are both zero valued for 
either o0=θ  or o90=θ . The stiffness terms of interest are written as 
 

∑
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−−=
n

K
KKK hhQA

1
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       (7.48) 

∑
=

−−=
n

K
KKK hhQA

1
12626 )()(  

 
Since the identified Q  terms are all zero valued for unidirectional and cross-plied 
laminates, the 16A  and 26A  extensional stiffness terms are also zero valued. Thus these 
special laminates behave as orthotropic layers with respect to in-plane forces. 
 
In the case of angle ply laminates, for every lamina (ply) with fiber reinforcement 
oriented at θ+  with respect to reference coordinates there is a lamina with identical 
constitutive properties and thickness oriented at an off-set angle of θ− . Because the 
constitutive terms 16Q  and 26Q  are odd functions of θ  as shown in (7.47), these two 
layers contribute equal positive and negative quantities to the extensional stiffness terms 

16A  and 26A . Thus these extensional stiffness terms are zero valued for angle ply 
laminates. Therefore angle ply laminates act as specially orthotropic layers with respect 
to in-plane forces and strains. Note that the relative position of these lamina pairs, i.e., 
with respect to the geometric mid-plane of the laminate, is immaterial. It follows that it is 
possible to construct a symmetric laminate, which exhibits an identically zero coupling 
stiffness matrix [ ]B , which at the same time is specially orthotropic with respect to in 
plane forces and strains ( 02616 == AA ). 
 
Simplification of the bending stiffness matrix [ ]D , which is defined in (7.20), can also be 
considered for these special laminates. The contribution of a ply to a particular term in 
[ ]D  comes from the product of the appropriate term in [ ]Q  and the difference in the 
cubes of the z coordinate of the upper and lower ply interfaces. Since the contribution of 
the geometric term ( )3

1
3

−− KK hh  is always positive, this results in the 122211 ,, DDD  and 
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66D  terms all being positive valued. Because the 16Q  and 26Q  are odd functions ofθ , the 

16D  and 26D  terms in the bending stiffness matrix can be zeroed out. This result is 
accomplished by having all plies in the laminate oriented at either 0o or 90o or if for every 
ply oriented at θ+  above the geometric mid-plane there is an identical ply at an equal 
distance below the mid-plane oriented at θ− . Of course laminates of the latter type do 
not exhibit mid-plane symmetry and thus the coupling stiffness matrix [ ]B  is nonzero in 
this case. Thus the only mid-plane symmetric laminates, for which the bending stiffness 
terms 16D  and 26D  are identically zero, are those that have every ply oriented at either 0o 
or 90o. It should be noted that for a laminate with alternate plies at equal positive and 
negative values ofθ , the 16D  and 26D  terms approach zero as the number of plies 
(laminae) increase. 
 
7.4.3 Quasiisotropic Laminates 
 
A laminate construction widely utilized in many design applications is denoted 
quasiisotropic. In this construction, the ply lay-up results in the extensional stiffness 
matrix exhibiting isotropic material behavior. These laminate constructions do not, 
however, result in isotropic behavior with regard to the coupling and bending stiffness 
matrices, [ B ] and [ D ] respectively. This means that the elastic coefficients ijA  are 
independent of orientation in the plane of the laminate. In this case there are only two 
independent elastic coefficients similar to those in the stiffness matrix of an isotropic 
material. Stiffness terms for the quasiisotropic laminate must satisfy certain relationships 
in order to be consistent with the stiffness terms for an isotropic material. These 
relationships are as follows 
 

2211 AA =  
 

661211 2AAA =−    (7.49) 
 

02616 == AA  
 
The first of these expressions simply says that the extensional modulus is independent of 
orientation. The second expression in (7.49) is analogous to the following relationship for 
isotropic materials, i.e,  
 

GEE 2
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rearranging gives 
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and simplifying provides the well known relationship for isotropic materials 
 

( )ν+=
12
EG  

 
Here the isotropic material terms include E  (Young’s modulus), ν  (Poisson’s ratio) and 
G (shear modulus). The last expression in (7.49) represents the fact that there is no 
coupling between extensional and in-plans shear strain for the quasiisotropic laminate.   
The construction of a quasiisotropic laminate has the following requirements 
 

(1)   3≥n , where n  represents the number of plies in the laminate 
 

(2)   Individual plies must be of equal thickness and equal stiffness [ ]KQ  values  
 

(3)   Plies must be oriented at equal angles, i.e, nKK πθθ =− −1  
 
Thus the angle between two adjacent plies should have the value of nπ . Examples would 
include the three ply laminate [ oo 60/0 ± ] and the four ply laminate [ ooo 90/45/0 ± ].  
Note that for laminates constructed with sets of three or more plies each, the plies in each 
set must satisfy the above stated condition on orientation. An example would be the eight 
ply laminate [ ooo 90/45/0 ± ]S.  
 
It is important to note that the strength properties of quasiisotropic laminates are still 
directionally dependent even in the plane of the laminate. 
 
7.5 Some Examples of Laminate Analysis 
 
Two different laminate geometries are considered along with different combinations of 
applied and thermal loads. The first laminate is a two-ply [45/0] construction and the 
second is an eight-ply [0/45/-45/90]S symmetric construction. Note that plies made from 
unidirectional pre-impregnated tape are generally on the order of 0.125 mm (0.005 in.) 
thick. The ply thicknesses specified in the following examples are larger than the typical 
tape thickness, thus each ply in the examples might be thought of as a number of tape lay-
ups with the same fiber orientation. The properties used in these examples are those of a 
typical E-glass epoxy. Some of these properties have been used in earlier examples, but 
all of the properties are listed below. 
 

45.0=fV  (volume fiber fraction) 
 

3/8.1 cmg=ρ  (density) 
 
Elastic Moduli (Natural Coordinates) 
 

)6.5(6.38 MPsiGPaEL =  
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)20.1(27.8 MPsiGPaET =  

 
)60.0(14.4 MPsiGPaGLT =  

 
Major Poisson’s Ratio 
 

26.0=LTν  
 
Thermal Expansion Coefficients (Natural Coordinates) 
 

Cx o
L /1060.8 6−=α  

 
Cx o

T /1010.22 6−=α  
 
Strength Properties 

 
)1.154(1062 KPsiMPaLU =σ  

 
)5.88(610 KPsiMPaLU =′σ  

 
)5.4(31 KPsiMPaTU =σ  

 
)1.17(118 KPsiMPaTU =′σ  

 
)45.10(72 KPsiMPaLTU =τ  

 
7.5.1 Two-Ply [45/0] Laminate Subjected to Applied Loads 
 
The top lamina with thickness 3mm has a 45o orientation with respect to reference XY 
coordinates while the bottom lamina of thickness 5mm has a 0o orientation. Thus the 
laminate has a total thickness of 8mm. The applied loads are mmNN X /300=  
and mmNNY /150= . Based on the given properties, the stiffness matrix [Q ] is identical 
for each ply and is determined from equations (3.20) as 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

14.400
03915.81818.2
01818.2167.39

Q  GPa 

 
The [Q ] and [Q ] stiffness matrices are identical for the 0o ply thus  
 

[ ] [ ]QQ o =0  
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However, [Q ] for the 45o ply is determined using equations (5.24) and becomes 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

799.106939.76939.7
6939.7121.178406.8
6939.78406.8121.17

45oQ  GPa 

 
The extensional [ A ], coupling [ B ] and bending [ D ] stiffness matrices for the laminate 
can now be determined using equations (7.16), (7.17) and (7.20) respectively. The z-
coordinate (h values) in these equations are mmho 4−= , mmh 11 −=  and mmh 42 += . The 
laminate stiffness matrices are defined below in basic Newton and meter units. Thus the 
units of [ A  ] are N/m, [ B ] are N and [ D ] are Nm. The laminate stiffness matrices in this 
example are given here as 
 

   [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++
+++
+++

=
853096.0823082.0823082.0
923082.0893319.0837431.0
823082.0837431.092472.0

EEE
EEE
EEE

A   N/m 

 
 

   [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−+−+−
+−+−+−
+−+−+

=
549941.0557704.0557704.0
557704.0565468.0549941.0
557704.0549941.0616535.0

EEE
EEE
EEE

B   N 

 

   [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++
+++
+++

=
331647.0316157.0316157.0
316157.0354135.0323292.0
316157.0323292.0412082.0

EEE
EEE
EEE

D   Nm 

 
Substituting the applied loads and the laminate stiffness matrices into (7.21) and solving 
gives the mid-plane strains and curvatures as  
 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
=

00094981.0
0015448.0
0013845.0

oε    

 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧−
=

41605.0
20351.0
26586.0

k   1/m 

 
Having the mid-plane strains and curvatures, the strains in reference XY coordinates are 
calculated using (7.6). These strains are given as 
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MECHANICAL (ELASTIC) STRAINS IN XY COORDS. FOR PLY    1 
 
EPX-UPPER   EPX-LOWER   EPY-UPPER   EPY-LOWER   EPXY-LOWER  EPXY-LOWER 
 
0.24479E-02 0.16503E-02 0.73073E-03 0.13412E-02-0.26140E-02-0.13659E-02 
 
MECHANICAL (ELASTIC) STRAINS IN XY COORDS. FOR PLY    2 
 
EPX-UPPER   EPX-LOWER   EPY-UPPER   EPY-LOWER   EPXY-LOWER  EPXY-LOWER 
 
0.16503E-02 0.32100E-03 0.13412E-02 0.23588E-02-0.13659E-02 0.71438E-03 
 
The stresses in reference XY coordinates are the determined from (5.21) or (7.9) for each 
ply. In this example these stresses are given below. 
 
 
STRESSES IN REFERENCE  XY COORDS. FOR PLY    1 
 
SX-UPPER    SX-LOWER    SY-UPPER    SY-LOWER    SXY-UPPER   SXY-LOWER 
 
 28.258      29.603      14.039      27.044      -3.7720     8.2672 
 
STRESSES IN REFERENCE XY COORDS. FOR PLY    2 
 
SX-UPPER    SX-LOWER    SY-UPPER    SY-LOWER    SXY-UPPER   SXY-LOWER 
 
 67.565      17.719      14.856      20.494      -5.6547     2.9575 
 
Stresses are transformed to natural (material) coordinates for each ply using equation 
(5.1). We have 
 
 
STRESSES IN NATURAL LT COORDS. FOR PLY    1 
 
SL-UPPER    SL-LOWER    ST-UPPER    ST-LOWER    SLT-UPPER   SLT-LOWER 
 
 17.377      36.591      24.921      20.056      -7.1091     -1.2795 
 
STRESSES IN NATURAL LT COORDS. FOR PLY    2 
 
SL-UPPER    SL-LOWER    ST-UPPER    ST-LOWER    SLT-UPPER   SLT-LOWER 
 
 67.565      17.719      14.856      20.494      -5.6547     2.9575 
 
Note that these stresses are all given in units of MPa. The nomenclature in these results is 
that SX, SY, and SXY represent the stresses in the reference XY directions and SL, ST, 
and SLT the longitudinal (along the fiber reinforcement) and transverse (perpendicular to 
the fiber reinforcement) directions, i.e., natural coordinates. The SXY and SLT terms 
represent shear stresses in the respective coordinate systems. Remember that it is 
important to be able transform the stresses to natural coordinates for the purposes of 
performing failure analysis.  
 
The strains in natural coordinates are obtained from equation (3.19) as presented below. 
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STRAINS  IN NATURAL LT COORDS. FOR PLY    1 
 
EL-UPPER    EL-LOWER    ET-UPPER    ET-LOWER    ELT-UPPER   ELT-LOWER 
 
0.28231E-03 0.81285E-03 0.28963E-02 0.21787E-02-0.17172E-02-0.30907E-03 
 
STRAINS  IN NATURAL LT COORDS. FOR PLY    2 
 
EL-UPPER    EL-LOWER    ET-UPPER    ET-LOWER    ELT-UPPER   ELT-LOWER 
 
0.16503E-02 0.32100E-03 0.13412E-02 0.23588E-02-0.13659E-02 0.71438E-03 
 
The stresses in reference XY coordinates are plotted in Figure 7.6 over a cross section of 
the laminate. 
 

STRESSES IN XY COORDINATES TWO PLY LAMINATE
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   Figure 7.6 Stress Variation for Two-Ply [45/0] Laminate, Reference Coords. 
 
This graphical representation of stress variation clearly shows that the maximum stress in 
reference coordinates occur at the upper interface of the lower 0o ply. Stresses in natural 
(material) coordinates are plotted for this two-ply laminate in Figure 7.7 below. This plot 
also shows that the maximum stress in natural coordinates occurs at the upper face of the 
lower 0o ply. Applying the maximum stress criteria to these results, the most critical 
stress is the transverse tensile stress at the upper surface of the 45o ply. We have 
 

0.1804.0 <=
TU

T

σ
σ
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Thus the applied loads are not predicted to produce failure in this two-ply laminate. 
Applications of the alternative failure theories predict no failure in this example as well. 
The fact that the transverse tensile stress is most critical is due to the low transverse 
strength of the matrix. This is commonly the first type of damage observed in laminated 
composite materials and the damage is exhibited as cracks in the matrix running parallel 
to the reinforcing fibers.  
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   Figure 7.7 Stress Variation for Two-Ply [45/0] Laminate, Natural Coords. 
 
 
7.5.2 Two-Ply [45/0] Laminate Subjected to Thermal Load Only 
 
The laminate geometry is unchanged in this example. The intent is to calculate the 
residual stresses caused by the fabrication process. It is assumed that the laminate is 
processed at a fabrication temperature of 175oC and cooled to room temperature of 25oC. 
Thus the change in temperature for calculation purposes is 
 

CT o150−=Δ   
 
The ply stiffness matrices [ ]Q , [ ]Q  and the laminate stiffness matrices [ ]A , [ ]B , and [ ]D  
are unchanged from the previous example. The coefficients of thermal expansion must be 
transformed from natural coordinates to reference XY coordinates for each ply using 
equations (7.31). This gives 
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6

45

10
5.13

35.15
35.15

−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
x

oXY

Y

X

α
α
α

   Co/  

 

6

0

10
0

1.22
6.8

−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
x

oXY

Y

X

α
α
α

     Co/  

 
for the upper 45o and lower 0o plies, respectively. The apparent thermal forces and 
moments are then obtained from equations (7.38) and (7.42) and are given below. 
 

610
040689.0
28575.0
42138.0

+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
−
−

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

x
N
N
N

T
XY

T
Y

T
X

    mN /  

 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
+
−

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

72.101
72.101
72.101

T
XY

T
Y

T
X

M
M
M

     mNm /  

 
Substituting the apparent thermal loads and moments into and the laminate stiffness 
matrices into (7.21) gives the mid-plane strains and curvatures as  
 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
−
−

=
0007915.0
002907.0
001533.0

oε  

 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
−
+

=
33743.0
17239.0
12164.0

k    1/m 

 
The mid-plane strains and curvatures can be substituted into (7.34) to obtain the 
mechanical (elastic) strains for each ply. These strains are given here as 
 
 
 
 MECHANICAL STRAINS IN REFERENCE XY COORDS. FOR PLY    1 
 
 EPX-UPPER   EPX-LOWER   EPY-UPPER   EPY-LOWER   EPXY-LOWER  EPXY-LOWER 
 
0.28270E-03 0.64761E-03 0.84742E-04-0.43244E-03 0.11626E-03-0.89604E-03 
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 MECHANICAL STRAINS IN REFERENCE XY COORDS. FOR PLY    2 
 
 EPX-UPPER   EPX-LOWER   EPY-UPPER   EPY-LOWER   EPXY-LOWER  EPXY-LOWER 
 
-0.36489E-03 0.24329E-03 0.58006E-03-0.28190E-03 0.11290E-02-0.5582E-03 
 
 
The stresses in reference XY coordinates are determined from (7.36) for each ply and are 
listed below.  
 
 
  STRESSES IN REFERENCE XY COORDS. FOR PLY    1 
 
 SX-UPPER    SX-LOWER    SY-UPPER    SY-LOWER   SXY-UPPER   SXY-LOWER 
 
   6.484       0.370       4.845      -8.572       4.082      -8.021 
 
 STRESSES IN REFERENCE XY COORDS. FOR PLY    2 
 
 SX-UPPER    SX-LOWER    SY-UPPER    SY-LOWER   SXY-UPPER   SXY-LOWER 
 
  -13.026       8.914       4.072      -1.835       4.674      -2.311 
 
Stresses are transformed to natural (material) coordinates for each ply through (5.1). 
 
 
 STRESSES IN NATURAL LT COORDS. FOR PLY    1 
 
 SL-UPPER    SL-LOWER    ST-UPPER    ST-LOWER   SLT-UPPER   SLT-LOWER 
 
  9.747     -12.122       1.582       3.920      -0.820      -4.471 
 
STRESSES IN NATURAL LT COORDS. FOR PLY    2 
 
SL-UPPER    SL-LOWER    ST-UPPER    ST-LOWER   SLT-UPPER   SLT-LOWER 
 
 -13.026       8.914       4.072      -1.835       4.674      -2.311 
 
The stresses are all defined in units of MPa.  The strains in natural coordinates are 
obtained by solving (3.19). 
 
 
STRAINS IN NATURAL LT COORDS. FOR PLY    1 
 
 EL-UPPER    EL-LOWER    ET-UPPER    ET-LOWER    ELT-UPPER   ELT-LOWER 
 
0.24185E-03-0.34044E-03 0.12559E-03 0.55561E-03-0.19796E-03-0.10800E-02 
 
STRAINS IN NATURAL LT COORDS. FOR PLY    2 
 
 EL-UPPER    EL-LOWER    ET-UPPER    ET-LOWER    ELT-UPPER   ELT-LOWER 
-0.36489E-03 0.24329E-03 0.58006E-03-0.28190E-03 0.11290E-02-0.5582E-03 
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For this case of thermal loads only, the residual stresses in reference coordinates are 
plotted below in Figure 7.8 over a cross section of the laminate. In this graphical 
representation it is clear that the largest stress is compressive and acts at the interface 
between plies. Note that the variation of Xσ , Yσ , and XYτ  are self-equilibrating which is 
consistent with the fact that there are no external applied forces/moments in this example. 
Thus the net area in each of these stress plots, in reference coordinates, and the moment 
of the area about any point is zero.   
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         Figure  7.8 Residual Stress Variation for Two-Ply [45/0] 

                       Laminate, Reference Coordinates 
 
 
Residual stresses in natural coordinates are plotted below in Figure 7.9. The largest stress 
in natural coordinates is compressive and occurs at the upper interface of the 0o ply. 
Applying the maximum stress criteria in this case, the most critical stress is the transverse 
tensile stress at the upper interface of the 0o ply. This criteria is written as 
 

1131.0 <=
TU

T

σ
σ

 

 
Therefore the residual thermal stresses produced in this example are quite low and not 
predicted to produce failure. Alternative failure theories also predict that these stresses 
are quite safe. 
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STRESSES IN LT COORDINATES TWO PLY LAMINATE 
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        Figure 7.9 Residual Stress Variation for Two-Ply [45/0] 
                     Laminate, Natural Coordinates 
 
7.5.3 Two-Ply [45/0] Laminate Subjected to Applied and Thermal Loads 
 
In this example the applied and apparent thermal loads of the previous two example 
problems are combined. Thus in this case the governing equations (7.21) are solved for 
the mid-plane strains and curvatures where the loads { }N  and moments { }M  contain 
both the applied and the apparent thermal loads/moments as defined in (7.45) and (7.46). 
Mid-plane strains and curvatures are substituted into (7.34) to obtain the mechanical 
(elastic) strains for each ply. Stresses in reference XY coordinates come from (7.36) and 
are transformed to natural coordinates for each ply using the transformation (5.1). Strains 
in natural coordinates come from (3.19). The stresses in reference XY coordinates are 
plotted below in Figure 7.10 through a cross section of the laminate. Stresses in natural 
coordinates are plotted in Figure 7.11. Applying the maximum stress criteria, the most 
critical stress is the transverse tensile stress at the upper surface of the 45o ply.  We have 
 

1855.0 <=
TU

T

σ
σ

 

 
Thus the combined loads are not predicted to produce failure. 
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Figure 7.10 Stress Variation for [45/0] Laminate, Ref. Coords., Combined Loads 
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Figure 7.11 Stress Variation for [45/0] Laminate, Natural Coords., Combined Loads  
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7.5.4 Quasiisotropic [0,45,-45,90]S Laminate Subjected to Applied Loads 
 
This symmetric laminate is comprised of eight plies where each ply is 0.25 mm thick. 
Thus the laminate has a thickness of 3 mm. The applied loads in this case are 

mmNN X /100=  and mmNNY /50= . Based on the given E-glass epoxy properties, the 
stiffness matrix [Q ] is identical for each ply and has been previously defined in section 
7.5.1. The [Q  ] and [Q ] matrices are identical for the 0o ply. The [Q ] matrix for the 45o 
ply has also been previously defined. The [Q ] stiffness matrices for the -45o and 90o off-
axis plies are defined using equation (5.24) and are written below. 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−

=−

799.106939.76939.7
6939.7121.178406.8
6939.78406.8121.17

45oQ   GPa 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

14.400
0167.391818.2
01818.23915.8

90oQ    GPa 

 
The extensional [ A ], coupling [ B ] and bending [ D ] laminate stiffness matrices are 
defined using equations (7.16), (7.17) and (7.20) respectively. The z-coordinate (h 
values) locating the upper and lower interfaces of each ply are given as 
 
   ho=-1.0mm, h1=-0.75mm, h2=--0.50mm, h3=-0.25mm, h4=0.00mm 
   h5=0.25mm, h6=0.50mm, h7=0.75mm, h8=1.0mm 
 
The laminate stiffness matrices are defined in basic Newton and meter units. These 
matrices in this example are as follows 
 

   [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
++
++

=
814939.00.00.0

0.0840900.0811022.0
0.0811022.0840900.0

E
EE
EE

A   N/m 

 

   [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

5634.496174.096174.0
96174.02791.8258.3
96174.0258.382.19

D   Nm 

 
The coupling stiffness matrix [ B ] is numerically zero-valued because the laminate 
stacking sequence is symmetric.  Since this is a quasiisotropic laminate, terms in the 
extensional stiffness matrix [ A ] satisfy the relationships given in (7.49) for isotropic 
material behavior. Substituting the applied loads along with the laminate stiffness 
matrices into (7.21) and solving gives the mid-plane strains as 
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{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

0000000.0
0006077.0
0022812.0

oε  

 
The plate curvatures { k } are numerically zero-valued in this case due to the fact that 
there is no coupling between in-plane loads and bending. Following he same procedure as 
in the previous examples, the mid-plane strains are substituted into (7.6) to solve for 
strains in reference coordinates. Stresses in reference coordinates are determined from 
(5.21) and these stresses are transformed to natural coordinates for each ply using 
equation (5.1) or (7.9). These stresses in natural coordinates  are written below for the 
four plies above the geometric mid-plane of the laminate. 
 
STRESSES IN NATURAL LT COORDS. FOR PLY    1 
 
SL-UPPER    SL-LOWER    ST-UPPER    ST-LOWER   SLT-UPPER   SLT-LOWER 
 
 90.675      90.675      10.077      10.077       0.000       0.000 
 
STRESSES IN NATURAL LT COORDS. FOR PLY    2 
 
SL-UPPER    SL-LOWER    ST-UPPER    ST-LOWER   SLT-UPPER   SLT-LOWER 
 
 59.727      59.727      15.273      15.273      -6.928      -6.928 
 
STRESSES IN NATURAL LT COORDS. FOR PLY    3 
 
SL-UPPER    SL-LOWER    ST-UPPER    ST-LOWER   SLT-UPPER   SLT-LOWER 
 
 59.727      59.727      15.273      15.273       6.928       6.928 
 
 
STRESSES IN NATURAL LT COORDS. FOR PLY    4 
 
SL-UPPER    SL-LOWER    ST-UPPER    ST-LOWER   SLT-UPPER   SLT-LOWER 
 
 28.780      28.780      20.469      20.469       0.000       0.000 
 
Due to symmetry and the fact that only in-plane loads are applied to the laminate, the 
stresses in the four plies below the geometric mid-plane of the laminate are the mirror 
image of the stresses given above. Stresses in reference XY coordinates are plotted in 
Figure 7.12 over a cross section of the laminate. Stresses in natural (material) coordinates 
are similarly plotted in Figure 7.13. The largest stress is the longitudinal stress in the 0o 
ply. However, the most critical stress is the transverse tensile stress in the 90o ply. We 
have 
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STRESSES IN XY COORDINATES QUASI-ISOTROPIC LAMINATE
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     Figure 7.12 Stress Variation for [0/45/-45/90]S Laminate, Ref. Coords. 

STRESSES IN LT COORDINATES QUASI-ISOTROPIC LAMINATE
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   Figure 7.13 Stress Variation for [0/45/-45/90]S Laminate, Natural Coords.  
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It is apparent that the applied loads are not predicted to produce failure in this 
quasiisotropic laminate. As in the previous examples, the low transverse tensile strength 
is the reason that transverse tensile stress is most critical. The first form of damage in this 
example would be observed as matrix cracking in the 90o plies. 
 
8.0 SUMMARY 
 
A well established computational method, based on classical lamination theory, for 
calculating stresses/strains in reinforced laminated composite structures has been 
presented. Furthermore, various failure theories have been defined, each of which utilizes 
the calculated stresses/strains on a ply-by-ply basis in the laminate. Externally applied 
loads and hygrothermal (thermal and moisture) effects have been included in the 
computational procedure. Stress and failure predictions are an integral part of the design 
process when specifying laminate geometries. 
 
It has been noted that stress predictions from classical lamination theory are quite 
accurate in locations away from boundaries, e.g., free edges, edge of a hole or cutout, 
etc., of the laminate. Thus at distances equal to the laminate plate thickness or greater the 
computational method presented herein is accurate and useful in the preliminary design 
of laminated composite structures. The basis for this limitation is that lamination theory 
assumes a generalized state of plane stress which is reasonably accurate away from 
boundaries. Along boundaries, the state of stress becomes three-dimensional with the 
possibility that interlaminar shear and/or interlaminar normal stresses can become 
significant. Deviation of lamination theory along laminate boundaries is often referred to 
as a boundary-layer phenomenon. Computation of stresses along laminate boundaries is 
generally accomplished through the application of finite difference, finite element or 
boundary element computer programs and is beyond the scope of the methodology 
presented in this course. 
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