PDHonline Course M426 (8 PDH)

Stress and Failure Analysis of Fiber-
Reinforced Composite Structures with
Computer-Based Solutions

Instructor: John J. Engblom, Ph.D., PE

2020

PDH Online | PDH Center

5272 Meadow Estates Drive
Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

An Approved Continuing Education Provider



http://www.PDHonline.com

www.PDHcenter.com PDHonline Course M426

1.0

2.0

3.0

4.0

5.0

6.0

7.0

TABLE OF CONTENTS

Introduction
Material Definitions
2.1 Isotropic Material Behavior
2.2 Anisotropic Material Behavior
2.3 Orthotropic Material Behavior
Hooke’s Law for Orthotropic Materials
Restrictions on Elastic Constants
Stress-Strain Relations for Generally Orthotropic Lamina
Biaxial Strength Theories for Orthotropic Lamina
6.1  Separable Strength (Failure) Theories
6.1.1 Maximum Stress Theory
6.1.2 Maximum Strain Theory
6.1.3 Hashin Quadratic Theory
6.1.4 Chang Quadratic Theory

6.2 Generalized Strength (Failure) Theories

6.2.1 Tsai-Hill Theory
6.2.2 Tsai-Wu Tensor Theory

6.3  Another Example Comparing Failure Theories

6.4  Failure Envelopes (Generalized Theories) for
Biaxial Stress State

6.5  Effect of Shear Stress Direction on Lamina Strength

Analysis of Laminated (Multi-Layered) Composites

7.1  Specifying Stress and Strain Variation in a Laminate

7.2  Relating Resultant Forces and Moments to
Strain and Curvature

©2012 John J. Engblom

www.PDHonline.org

15
17
24
26
26
29
32
35
38

38
42

48

50

56
56

60

Page 2 of 105




www.PDHcenter.com PDHonline Course M426 www.PDHonline.org

7.3 Including Hygrothermal Effects in Laminate Analysis 64

7.4  Construction and Properties of Various Laminates 70
7.4.1 Symmetric Laminates 71
7.4.2 Unidirectional, Cross-Ply and Angle-Ply Laminates 71
7.4.3 Quasiisotropic Laminates 73
7.5  Some Examples of Laminate Analysis 74
7.5.1 Two-Ply [45/0] Laminate Subjected to 75
Applied Loads
7.5.2 Two-Ply [45/0] Laminate Subjected to 79
Thermal Load Only
7.5.3 Two-Ply [45/0] Laminate Subjected to 83
Applied and Thermal Loads
7.5.4 Quasiisotropic [0/45/-45/90]s Laminate 84
Subjected to Applied Loads
8.0  Flow Chart for LAMCALCS Computer Program 88
9.0  Description of User Input for LAMCALCS Program 91
10.0 Example Of Prompted Input To LAMCALCS Program 92
11.0 Example of Output From LAMCALCS Computer Program 95
12.0 Summary 103
13.0 References 103

©2012 John J. Engblom Page 3 of 105




www.PDHcenter.com PDHonline Course M426 www.PDHonline.org

1.0 INTRODUCTION

This course focuses on presenting a well established computational method for
calculating stresses/strains in fiber- reinforced laminated composite structures. The basis
for the presented computational method is often referred to as classical lamination
theory. A clear understanding of this approach is supported by the development of the
fundamental mechanics of an orthotropic lamina (ply). Various failure theories are
presented each requiring that stresses/strains be quantified on a ply-by-ply basis in order
to make failure predictions. Both applied loads and hygrothermal (thermal and moisture)
effects are treated in the computational procedure. Computer results presented herein
have been produced using the LAMCALCS computer program. Stress and failure
predictions are an important part of the process required in the design of laminated
composite structures.

The learning objectives for this course are as follows:

1. Understanding the differences between isotropic, orthotropic and anisotropic
material behavior

2. Having knowledge of the material constants required to define Hooke’s law for an
orthotropic lamina (ply)

3. Understanding the restrictions on the material constants required in evaluating
experimental data

4. Knowing the difference between reference and natural (material) coordinates for
an orthotropic lamina

5. Being familiar with the stress-strain relations in reference and natural coordinates
for an orthotropic lamina

6. Understanding the coordinate transformations used in transforming stresses and/or
strains from one coordinate system to another

7. Knowing generally the types of tests performed to determine the stiffness and
strength properties of an orthotropic lamina

8. Having knowledge of a number of biaxial strength (failure) theories used in the
design of laminated composite structures

9. Understanding which in-plane strength quantities are needed, as a minimum, in
applying various failure theories

10. Knowing the difference between separable and generalized failure theories

11. Understanding that the maximum stress and maximum strain failure theories
make similar predictions except under certain material behavior

12. Appreciating under what conditions the Chang failure criteria reduces to the
Hashin failure criteria

13. Knowing the basis for the fact that the Tsai-Wu failure criteria is more general
than the Tsai-Hill failure criteria

14. Being familiar with the effect of the direction of shear stress on lamina strength

15. Understanding the laminate orientation code used to define stacking sequence

16. Being familiar with a number of special laminate constructions designed to
eliminate undesirable composite material behavior
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17. Understanding the computational procedure for determining the stresses/strains in
a laminated composite subject to applied loads and/or hygrothermal effects

18. Understanding the computational procedure for making failure predictions
associated with stresses/strains

19. Having knowledge of the basis for and limitations of classical lamination theory

20. Having knowledge of the basis for and limitations of the various failure theories

21. Appreciating the essential features of the computer flow chart consistent with
application of classical lamination theory

22. Understanding the input procedure for the LAMCALCS computer program

23. Understanding the output provided by the LAMCALCS computer program.

24. Understanding the importance of using consistent units in obtaining relevant
stress/strain and failure predictions using LAMCALCS.

It is important to note a limitation on the computational methodology presented in this
course. Stress predictions from classical lamination theory are quite accurate in locations
away from boundaries, e.g., free edges, edge of a hole or cutout, etc., of the laminate.
Thus at distances equal to the laminate plate(shell) thickness or greater, the
computational method presented herein is accurate and useful in the preliminary design
of laminated composite structures. The basis for this limitation is that lamination theory
assumes a generalized state of plane stress which is reasonably accurate away from
boundaries. Along boundaries, the state of stress becomes three-dimensional with the
possibility that interlaminar shear and/or interlaminar normal stresses can become
significant. Deviation of lamination theory along laminate boundaries is often referred to
as a boundary-layer phenomenon. Computation of stresses along laminate boundaries is
generally accomplished through the application of finite difference, finite element or
boundary element method computer programs and is beyond the scope of the
methodology presented in this course.

2.0 MATERIAL DEFINITIONS

A lamina or ply can be thought of as a single layer within a composite laminate and is
comprised of a matrix material and reinforcing fibers. When the fibers are long the layer
is referred to as a continuous-fiber-reinforced composite and the matrix serves primarily
to bind the fibers together. Alternatively layers with short fibers are denoted as
discontinuous-fiber-reinforced composites. Lamina are quite thin, i.e., generally on the
order of 1 mm or .005 in. thick. Lamina can have unidirectional or multi-directional fiber
reinforcement. Therefore a number of lamina bonded together form a laminate. Most
laminated composites used in structural applications are in fact multilayered. Laminates
have identical constituent materials in each ply; otherwise the term hybrid laminate is
used for laminates comprised of plies with different constituent materials. Fiber
reinforced composites are heterogeneous but for purposes of design analysis are typically
assumed to be macroscopically homogeneous. Thus for the computational methodology
presented in this course, orthotropic lamina (plies) are treated as homogenous with
directionally dependent properties. Orthotropic material behavior falls somewhere
between that of isotropic and anisotropic materials.
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2.1 Isotropic Material Behavior
For isotropic materials deformation behavior is independent of direction. Thus normal

stresses produce normal strains only and shear stresses produce shear strains only, as
depicted in the figure below.
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Figure 2.1. Extensional and Shear Deformation, Isotropic Material
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2.2 Anisotropic Material Behavior

In the case of anisotropic materials, deformation behavior is dependent on direction.
Thus, uniaxial tension produces both extensional and shear components of deformation.
Likewise, pure shear loads also produce extensional and shear deformation. Anisotropic
material behavior is depicted in the simple sketch below.

| I PR

Figure 2.2. Extensional and Shear Deformation, Anisotropic Material

2.3 Orthotropic Material Behavior

In the case of orthotropic materials deformation is, in general, direction dependent. An
exception occurs when loads are applied in natural (material) coordinates. These are by
definition coordinates in the plane of the lamina, wherein the longitudinal coordinate is
aligned with the fiber reinforcement and the transverse coordinate is aligned normal to
the fiber reinforcement. Longitudinal and transverse directions are material axes of
symmetry in a unidirectionally reinforced composite. When loads are applied in these
natural coordinates the material response is similar to that of isotropic materials, i.e.,
normal stresses produce normal strains only and shear stresses produce shear strains only
as shown below.
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Figure 2.3. Extensional and Shear Deformation, Orthotropic Material,
(Loaded Along Material Coordinates)
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Here the longitudinal and transverse axes are labeled as L and T, respectively.
Unidirectionally reinforced composites are often referred to as specially orthotropic.
Furthermore, unidirectionally reinforced laminas are isotropic in the out-of-plane (normal
to the plane of the lamina) direction.

3.0 HOOKE’S LAW FOR ORTHOTROPIC MATERIALS
Generalized Hooke’s law has the tensorial form

O = Eijklgkl (3.1)
where stresses are related to strains through the elastic constants Ejj.
In the matrix form of the constitutive equations, we have

{o}=[El} (32)

9x1 9x9 9x1

Here, the stress and strain tensors are of order 9x1 and there are 9x9 or a total of 81
elastic constants in the stiffness matrix [E]. It will be shown that these 81 elastic
constants reduce to 21 constants even without any axes of symmetry. With 21
independent elastic constants we have an anisotropic material. The stress tensor notation
is sketched in figure 3.1 below.
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Figure 3.1. Stress Tensor Notation

Consider going through this reduction in the number of elastic constants. First, consider
that we have symmetry in the strains, i.e.,

& =& JE
It is therefore easily shown that
Eijw = Eiji
We also have symmetry in the stress tensor, i.e., 0j; =0j; and therefore,
Eijxw = Ejiki
And thus the two symmetries reduce the elastic constants from 81 to 36. We have

{o}=[EKe} (3.3)
6x1 6x6 6x1

Here we have a total of 36 elastic constants.

Now consider the strain-energy density function defined as a function of the strains as
U=Ule;) (3.4)

with the property

oU /o, = o, (3.5)
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The simple 1-D analogy of (3.5) relates to the fact that the area under the stress-strain
curve is equal to the strain energy density. In the 1-D case we have

U=—c¢
Substituting the 1-D form of Hooke’s law, i.e., o = E¢ into the above gives
U=1Ee
2

Thus we have simply
oUloe=Ee=0

for a simple uniaxial state of stress.

Getting back to the 3-D case, we substitute the stress-strain relations (3.1) into (3.5)
oUle; =E ey (3.6)

Taking the derivative again we have
8/e,(0U /8¢, )= Ey (3.7)

Interchanging indices gives
0le;(0U /e, )=E,; (3.8)

Since the order of differentiation is immaterial we have
0/e;(0U/e,)=0le,(0U/e;)

Therefore
Eijw = Exij

Since ij and kl are interchangeable, we now have 21 constants for an anisotropic material.

In the matrix form of the previously written constitutive equations (3.3), the stiffness
matrix [E] is therefore a symmetric matrix. We have n(n+1)/2 independent constitutive

terms in [E], where n=6.

It is more convenient to write Hooke’s law in matrix form as
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{o}=[Qke} (3.9)
Where [Q] is symmetric as before, so that the off-diagonal stiffness terms are defined as

Qij = Qji-

If we think of the X, and X, axes as coordinates in the plane of the lamina, where the
X, axis aligns with the fiber reinforcement, the X, axis is transverse to the fibers and
the X, axis is then normal to the (X, X,) plane, these axes are sketched below.

Longitudinal

Figure 3.2. Natural (Material) Coordinates of Unidirectionally
Reinforced Lamina

The ply (lamina) depicted above shows only one fiber through the ply thickness. This is
atypical as there are normally several fibers through the thickness of a typical ply. Note
that in developing all of the formulation presented herein, the (L,T) axes are

interchangeable with the (X1,X2) axesand T' aligns with the X3 axis.

A more typical cross section of a composite taken from a single ply is shown in the
photograph (Figure 3.3) below.
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Figure 3.3. Typical Fiber Distribution in Unidirectionally
Reinforced Lamina (Ply)

An important factor in determining the stiffness and strength properties of composite
materials is the relative proportion of matrix to reinforcing materials. These proportions
can be quantified as either weight fractions or volume fractions. The volume fiber
fraction is defined as

Vi =V, /v, (3.10)

Here v, is the volume of fibers and v is the associated volume of composite. Similarly,
the weight fiber fraction is given as

W, =w,/w, (3.11)
where w, is weight of fibers and w; is the associated weight of composite.

The stress tensor contains the terms o,,0,,0;,7,,,7,3, 75 and the strain tensor contains the
terms &, &,,&5, 71,1723 V2 » TESPECtively. Here, y; are the engineering shear strains. Note
the relationship

where &; are the tensorial shear strains.

If we assume that we have one plane of material symmetry, X3=0, i.e., the X;,X; plane,
then the constitutive equations can be written in matrix form as
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( o ] Qu Q, Q3 O 0 Qp ] & ]
o, Qx Qu Qza 0 0 Qze &,

<0'3 [ _ Qu Qp Qp 0 0 Qg ) &3 [ (3.13)
1'23 O O 0 Q44 Q45 O 723
T3 0 0 0 Qs Qs 0 |7y

QUrs Qu Qs Qu O 0 Qee_f’lzJ

Thus no normal (extensional) stresses are produced by the out-of-plane (;/23,;/31) shear

stresses. Due to symmetry in the Qj constitutive terms, we have reduced the number of
independent material constants from 21 to 13.

As noted the coordinates X3, Xo, and Xs align with the material (natural) coordinates, we
have X; aligning with the fiber direction, X; is transverse to the fiber direction and X is
normal to the plane of the lamina. This coordinate alignment results in the (X2,X3) plane
becoming an additional plane of symmetry. In these natural coordinates stresseso,, o,

and o, do not produce in-plane shear strain y,,, and out-of-plane shear stresses rz,, and
75, become decoupled. In these natural coordinates, the constitutive equations reduce to

r a9 3

(o, ] Qu Q, Qs 0 0 0 || &
o, Qu Qp Qp 0 0 0 || &

193 _ Qi Qp Qi O 0 0 16 (3.14)
T2 0 0 0 Qu O 0 ||72
Ta1 0 0 0 0 Qs 0 ||7a

Qry 0 0 0 0 0 Qee_ V12 ]

We now have reduced the number of independent material constants to 9 for the 3D case
of an orthotropic material, i.e., utilizing material (natural) coordinates for the lamina.

If we consider the special case of a 2D orthotropic material and continue to use the
material (natural) coordinates, the constitutive equations simply reduce to

o, Q. Q, O &
0,r=(Qy Qp O &, (3.15)
Ty 0 0 Qe |71

In this case, there are only 4 independent material constants. This particular material case
can be described as a specially orthotropic lamina.

Inversion of the constitutive matrix [Q] gives the strains as a function of stresses. In
matrix form we have

©2012 John J. Engblom Page 12 of 105
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{e}=[slic} (3.16)

where [S] = [Q]™, and [S] is denoted the compliance matrix. In expanded matrix form this
becomes

& S, S, 0 (o
& =S, S, 0 Ko, (3.17)
Y12 0 Ses 712

For the specially orthotropic lamina where the reference axes coincide with the material
axes of symmetry, the engineering constants can be defined in more familiar terms. The
X,, X, axes become the L-T axes and the X,axis becomes the T’ axis as shown is the

sketch below (Figure 3.4). The L-T axes are in the plane of the lamina, where the
longitudinal L axis is directed along the fibers and the transverse T axis is directed
perpendicular to the fiber reinforcement. The T' axis is normal to the plane of the lamina
(often referred to as the through-the-thickness direction).

Transverse

Longitudinal

Figure 3.4. Longitudinal, Transverse and Through-The-Thickness
Axes, Unidirectionally Reinforced Lamina

The engineering constants are defined as

E. = Elastic modulus in longitudinal (along the fibers) direction

Er = Elastic modulus transverse to the fiber direction

Git = In-plane shear modulus

v, . = Major Poisson’s ratio (transverse strain produced by longitudinal stress)

v, = Minor Poisson’s ratio (longitudinal strain produced by transverse stress)

©2012 John J. Engblom Page 13 of 105
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The compliance terms in [S] can be defined in terms of these engineering constants as

1
TEL
L
1
=T E,
.
(3.18)
v v
S _Juo Y
12 EL ET
1
866 = G
LT
Thus in matrix form we have
I S
& E. ElT o,
myAR:
& ¢t = — 0 fo} 3.19
e B : (3.19)
Vit Tt
0 1
L Gir

Since [Q] = [S]™ the constitutive (stiffness) terms can be defined by inverting [S]

E
Qu=y—
—VirVn
E
Qp=r—"——
1-virvn
(3.20)
Q,, = vieEr _ viEL
2= =
1-virvn l1-vvg
Qes =Gyr

As an example, these engineering constants for Carbon/Epoxy AS/H3501 are given as
EL =138 GPa, Ey = 8.96 GPa, G 1= 7.10 GPaand v ; = 0.3

We know that we have symmetry such that Q;; = Q;i and S;; = S;;. Therefore,

©2012 John J. Engblom Page 14 of 105
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VL=VA (3.21)

Thus if the major Poisson’s ratio v ;is known, then the Minor Poisson’s ratio is
determined from

E
Voo = E_TVLT (3.22)
L

and only 4 independent material constants E., Er, G.1, and v, are needed to specify the
behavior of a specially orthotropic lamina.

4.0 RESTRICTIONS ON ELASTIC CONSTANTS

More experimental measurements are needed to characterize the behavior of an
orthotropic material relative to an isotropic material. For the various materials we have

¢ 3D Orthotropic, need 9 independent constants
¢ 2D Orthotropic, need 4 independent constants
e |sotropic, need only 2 independent constants

For an isotropic material, we have a relationship between Young’s modulus, shear
modulus and Poisson’s ratio, i.e.,G=E/2(1+v). Thus we need only two of the three

material constants to determine the third.

A unidirectional fiber composite can be considered to be transversely isotropic. Consider
the L—T—T' coordinate system where T' is normal to the LT (lamina) plane. The
material constants are related as below

E: =E;
GLT = GLT'
Vir =Vt
and
=

T 2+ vy

Therefore in this case we have 5 independent constants (E, ,E;,G;,v ;,andv.).

Constraints for isotropic materials are that E, G, and K are all positive, where K is the
Bulk modulus. Also

©2012 John J. Engblom Page 15 of 105
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-1<v <05
Remember that
E
G= ) thus v>-1 forG>0
2(L+v)
and
K:L . thus vgl forK>0
3(1-2v) 2

Similar constraints exist for orthotropic materials and are defined as follows
Si>0 and Q;; >0
Which is the same as
Elv EZ’ E3,G12,G13,G23 >0
or equivalently
E. .E E.G;,G;,GH >0
all essentially the same constraints. The following constraints are also required

=V )>0
A=V ) >0 (4.1)
A=V ver) >0

EL

These constraints are required because, e.g., Q, =———>
A=virvn)

Since we have the previously shown relationship

Vir _ Vo (3.21)
E, E. '

We can combine (3.21) with the first equation in (4.1) to give a constraint of the form

©2012 John J. Engblom Page 16 of 105




www.PDHcenter.com PDHonline Course M426 www.PDHonline.org

1/2
EL
Vit <|—
|LT| (ETJ

similarly we have the additional constraints

1/2 1/2 1/2 1/2 1/2
E E E. E E.
vi|< [E_:J v < [E—TLJ v | < [E_TLJ e | < [ﬁ} e | < [E_TTJ

The preceding constraints can be used to great benefit to evaluate experimental data. For
example, tensile testing both in the longitudinal (L) and transverse (T) directions gives
E.,v,; from longitudinal loading and E;,v; from the transverse loading. A check on

1/2
- . . . E
the validity of the data requires that the constraint equations |VLT|<[E_LJ and
T

1/2
E L
o | < [E—T] be satisfied.

L

5.0 STRESS-STRAIN RELATIONS FOR GENERALLY
ORTHOTROPIC LAMINA

Consider laminated composite structures that are constructed by stacking a number of
unidirectional lamina (plies) in a specified orientation sequence. Thus the principal
material (natural) coordinates of each lamina can be oriented at a different angle with
respect to a common reference coordinate system. The behavior of each lamina can be
described by the previously derived stress-strain relations in terms of the material
(natural) axes. For the purpose of analyzing laminated composite structures, it is
necessary to refer the stress-strain relations to a convenient reference coordinate system.
Thus we need to derive the stiffness and compliance matrices for an orthotropic lamina in
terms of arbitrary axes. A lamina referred to arbitrary axes is called a generally
orthotropic lamina.

The principal material L-T axes of each orthotropic lamina are oriented at an angle &
with respect to a common set of reference X-Y axes, as sketched below.

©2012 John J. Engblom Page 17 of 105
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Figure 5.1. Orthotropic Lamina with Oriented Fiber Reinforcement

The following transformation relations can be derived from equilibrium relating stresses
and strains in X-Y coordinates to L-T coordinates.

(o, O'x
o, r=[TR o, (5.1)
(Tor Txy
and
€L €x
1 ét (T [T] &y (5.2)
1 1
\E}/LT E}/XY
Here, the transformation matrix [T ] is defined as
c? s*  2sc
s? ¢ -2sC (5.3)
—sc sc (c2-s?)

where ¢ =cos(8) and s =sin(8).

Inversion gives the relation between stresses and strains in material L-T coordinates to
those in X-Y coordinates. We have

©2012 John J. Engblom
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Ox o,

10y (= [T ]_1 o (5.4)
Txy Ty

and
Ex &

e =TI & (5.5)
1 1

E ¥ xy E}/LT

and the inverted transformation matrix [T]™ is defined as
c® s* -=2sc

s ¢? 2sC (5.6)
sc —sc (c?—s?)

We have the stress-strain relationships for generally orthotropic laminas in natural
(material) coordinates. It is useful to have these relationships defined in the reference XY
coordinates as well. In order to derive the relationship between strain and stress in XY
coordinates, first substitute (5.1) into (3.19) giving

&L Oy
&r (= [S][T] Oy (5.7)
YT Txy

We can introduce a useful transformation between tensorial and engineering shear strains
as below

- -
& ¢=[RE & (5.8)
1
Vir E}/LT
where
1 00
[R]=|0 1 0 (5.9)
0 0 2
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Substituting (5.8) into (5.7) gives

g oy
[RE & t=[S]T} o, (5.10)
1 y Tyy
2 LT

Now substituting (5.2) into the left hand side of (5.10) yields

Ex Oy

[RITk & =[sITk o (5.11)
1 T
E}/XY Xy

The transformation matrix [R] can also be used to define the transformation

Ey £

& =[RI"{ & (5.12)

1}'x\( ¥ xv

2

where

[R]" =

(5.13)

o O -
o B O
NIRPRO O

Substituting (5.12) into the left hand side of (5.11) gives

RIFIRI & L=[sIT o, 5.14)
Y xy Txy

Simply rearranging the matrix relationship above gives

©2012 John J. Engblom Page 20 of 105
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(5.15)

It is easily shown that the transpose of [T] can be defined as

[rI" =[RITI[R]"

(5.16)

Substituting (5.16) into (5.15) yields the simplified strain-stress relationship in reference

X-Y coordinates.

Ex Oy
&y =[S oy

¥ xy Txy

where

[sl=[rT[sIT]

(5.17)

(5.18)

Note that the compliance matrix [S_] is fully populated and is herein represented as

_ §11 §12 §16
[S ] = §12 § 22 § 26
S S S

16 26

66

(5.19)

Relating stress to strain in the reference XY coordinates follows by inverting (5.17)

o £y
—1-1

Oy 1= [S] Ey

Txy ¥ xy
or simply

Oy Ex

Oy (= [Q &y

Txy ¥ xy
where

Rl=[s]* =TT IsI*[r]”

©2012 John J. Engblom
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As with the compliance matrix in the reference X-Y coordinate system, the stiffness
matrix [6 ] is fully populated and can be written as

AR
[Q ] = (312 gzz 926 (5.23)
Qi Qx Qe
The stiffness terms in [6] are related to the 4 independent terms in [Q] as given below.

611 = Q11C4 + sz54 + 2(Q12 + ZQGG)SZCZ
Qp = Qus’ +Que" +2(Q;; +2Qq)s*c”
612 =(Qy +Qp — 4Qee)3202 +Qy, (c* +s%)
o (5.24)
Qes = (Qu +Q,, —2Q,, — 2Q66)52C2 + Qes (s*+c*)
616 = (Qll - Q12 - zQee)CSS - (sz - Q12 - zQee)C53
626 = (Qn - Q12 - 2Q66 )C53 - (sz - Q12 - ZQes)C35

Similarly, the compliance terms in [§] are related to the 4 independent terms in [S] as
written below.

Su=S,c*+5,,5" +(2S,, + S )s°c?
Sa =5,,5" +5,,° +(2S,, + S )s2c?
S1 = (S, +S,, — S )C282 + S, (c +5%)
(5.25)
Ses = 2(2S,, +2S,, =4S, — Sg)c’s* + S (¢t +57)
S = (25, -25,, - 866)C35 —(25,, -25,, - SGG)CSS
Sz = (25, -25,, - See)C33 — (25,25, - SGG)CBS

As an example of calculating stresses consider the lamina shown below
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N
s

Figure 5.2. Stresses o, and o, Applied to Angled Ply,
Fiber Orientation 8 = 60°

Assume that we know the stress values in X-Y coordinates and that the lamina is a typical
E-glass epoxy composite material. Stresses have values

oy, = 20MPa(2.9Kpsi)
and
o, =40MPa(5.8Kpsi)
The E-glass epoxy properties are given as
V, =0.45 (volume fiber fraction)
p=1.8g/cm?® (density)
E, =38.6GPa(5.6MPsi)
E, =8.27GPa(1.20MPsi)
G, = 4.14GPa(0.60MPsi)

v, =0.26

Note that the fibers are orientated at 60° to the X coordinate axis. We determine the
stresses in natural (L — T ) coordinates by applying equation (5.1)
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o, 025 075 0.866 |(20] (35
o, t=| 075 025 -0.86640+=1 25! MPa
7] |-0433 0433 -05 |[0]| |8.66

The strains in natural coordinates are easily obtained from equation (3.19) as given below

e 2591E -11 —6.736E —12 0 35E +6 738
& b=|—6.736E—12 1.209E —10 0 25E+6 =12790} uc
Vi 0 0 2.415E —10||8.66E +6| |2092

Failure theories for orthotropic lamina are generally defined in terms of the natural
(material) coordinates and therefore it is essential in designing laminated composite
structures to be able to apply the coordinate transformations as just demonstrated.

It can be shown that strains in X-Y coordinates are related to strains in natural L—T
coordinates through the transformation

€x &
g p= [T ]T & (5.26)
¥ xy YT

Thus in the present example, the strains in X-Y coordinates are given as

Ey 025 075 -0.433| 738 1371
e =075 025 0.433 <2790 =4 2156 ; wus
Yy 0.866 —-0.866 —0.5 ||2092 — 2823

6.0 BIAXIAL STRENGTH THEORIES FOR ORTHOTROPIC LAMINA

For failure criteria to have validity, they must be able to predict the strength of materials
under multi-axial loading conditions based on data obtained from a set of simplified
loading tests. Failure criteria for isotropic materials are written in terms of principal
stresses in combination with ultimate tensile, compressive and shear strengths. Thus
applying failure theories in the design of isotropic materials requires that these three
strength quantities be known.

The situation is considerably more complex in the case of orthotropic materials. For these
engineered materials, both strength as well as stiffness (constitutive) properties are
direction dependent. For design purposes, the failure theories are generally based on five
in-plane strength quantities defined in natural (material) coordinates. These strength
guantities are herein defined as
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o, = Longitudinal tensile strength (in the direction of fiber reinforcement)

o, = Transverse tensile strength (normal to the direction of fiber reinforcement)

7,1y = Shear strength in the plane of the lamina
o,, = Longitudinal compressive strength

oy, = Transverse compressive strength

One of the failure theories presented later includes the transverse (out-of-plane) shear
strength 7.1, in the formulation even for the 2-D biaxial stress state considered here.

There is also the possibility of utilizing an additional strength quantity based on
experiments involving the application of a biaxial state of stress.

The longitudinal and transverse stiffness and strength properties can be obtained through
uniaxial testing of unidirectionally reinforced composite specimens. These tests involve
loading specimens along natural (material) coordinates. Uniaxial tension testing serves to
determine the longitudinal and transverse moduli E, and E; , tensile strength values o,

and o, , as well as Poisson’s ratios v ;andv; . Uniaxial compression tests are more

difficult to perform than uniaxial tension tests because the test must be designed to
prevent out of plane buckling and also to prevent edge damage. However, various test
methods do exist to overcome these difficulties. Thus uniaxial compression testing is
used to obtain the compressive strength values o[, and oy, . In-plane shear stiffness G,

and shear strength 7, values can be obtained from a number of different types of tests,

including torsion tube [1], rail shear [2], losipescu [3,4], Arcan [5], 10° off-axis specimen
[6] and +45°specimen [7]. As noted in [7], the +45° specimen does not require any
specialized fixtures and is therefore used often to determine the in-plane shear stress-
strain response of composite materials. The relevant test method is ASTM
D3518/D3518M-94(2001) Standard Test Method for “In-Plane Shear Response of

Polymer Matrix Composite Materials by Tensile Test of +45° Laminate”. This standard

test method is based on measuring the uniaxial stress-strain response of a +45° laminate
which is symmetrically laminated about the mid-plane. Obtaining shear stress/strain data
using the 10° off-axis specimen requires that oblique end tabs be used in order to achieve
a homogeneous strain field over the entire specimen [8-10].

Since failure theories for composite materials involve strengths in material L-T
coordinates, design calculations require transformation of the stress field from some X-Y
coordinate system to L-T coordinates. Failure criteria used in the design of composite
materials are thus written in terms of stresses in material coordinates rather than in terms
of principal stresses, as is the case for isotropic materials.
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It may be obvious but is useful to point out that a uniaxial stress applied in any off-axis
direction, i.e., not along a material axis, produces a multiaxial stress state in L-T
coordinates. Therefore, an appropriate failure theory must be used even for this simple
loading condition. Failure theories for orthotropic materials can be represented as
theoretical failure envelopes in stress space. These failure envelopes are similar to yield
surface envelopes used to represent the termination of linear elastic behavior for isotropic
materials. A number of strength (failure) theories, widely used in the design of fiber
reinforced composite structures, will now be presented. These approaches can be broken
into separable theories, i.e., those that can identify the mode of failure, and those that are
more generalized in that they identify a failure limit but do not separate out or identify
any particular failure mode. An estimation of the use of various failure criteria by people
working in the composites design field has been reported, see Paris [11]. This estimation
rated the relative utilization of the various criteria as follows: maximum strain 30% use;
maximum stress 23% use; Tsai-Hill 18% use; Tsai-Wu 13% use; and all others 19% use.
The maximum strain and maximum stress failure theories are herein denoted as separable
failure theories, whereas the Tsai-Hill and Tsai-Wu failure theories are denoted as
generalized failure theories. Two other failure theories to be presented herein, which are
included in “all others” regarding their utilization by designers, are denoted the Hashin
failure theory and the Chang failure theory. Each of these failure theories are defined as
separable failure theories. It is interesting to note that in a review of research papers the
majority of researchers base their proposals on variations of Hashin’s criteria [11].

6.1  Separable Strength (Failure) Theories

6.1.1 Maximum Stress Theory

In this theory the notion is that failure occurs if any of the stresses in the natural
(material) coordinates exceeds the corresponding allowable stress. In order to avoid
failure, the following inequalities must be satisfied

O-L < O-LU
o <Oy (6.1)
Tor <Trw

When the normal stresses are compressive, o, and o, are replaced with the allowable
compressive stresses as below

o, <0,
(6.2)

o <Oy

The traditional notion of factor of safety could be defined for this failure theory as the
minimum ratio of allowable stress divided by applied stress.
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Note that in this failure criterion there is assumed to be no interaction between the axial
and shear modes of failure. This over simplification can lead to an over prediction of
allowable strength.

As an example of applying this failure theory, consider the E-glass epoxy material of the
previous example. The strength properties are given as

., =1062MPa(154.1KPsi)
o, = 610MPa(88.5KPsi)
o, = 31MPa(4.5KPsi)

o', =118MPa(17.1KPsi)
7.7, = 72MPa(10.45KPsi)

Consider an orthotropic lamina subjected to a stress o, making an angle 6 with the
longitudinal fiber direction as illustrated in the sketch below.

Y | \\\ P
AT

Figure 6.1. Unidirectionally Loaded Lamina with Offset Angle &

The applied stress is transformed to material coordinates using equation (5.1), we have

o, oy o, C0s* @
o, r=[Tk 0 t={ o&,sin?6 (6.3)
T ¢ 0 -0y singcosé
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Combining (6.3) with the maximum stress criteria represented in (6.1) and (6.2) gives the
following inequalities, normalized by o, .

Oy 1
o, Co0s*@
Ix o O (6.4)

o, Oosin‘é

Ox . Tty
o, Osin@cosd

When the applied stress is compressive, the first two of these inequalities become

!

o, O,Cos°8
(6.5)

o, Oosin‘é

For any particular value of @, the inequality giving the lowest value of strength is the
appropriate failure prediction. The off-axis strength predictions using the maximum stress
criteria are plotted below for values of @ ranging from 0° to 90°. The strength results are

plotted in terms of normalized stressoy /o, .

12 =+
?
3 1
N 08+
5 Tension
N = = Compression
S 044
£
% 0.2 « gy,
O-

Q <o RIS RN S
Off-Axis Angle (Degrees)

Figure 6.2. Normalized Stress o, /o, Related to Off-Axis Angle@,
Maximum Stress Failure Theory
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At small values of @ the load is parallel or nearly parallel with the longitudinal fiber
direction. The difference in tensile and compressive strengths at these low angles is
attributable to different failure modes in tension and compression for this particular
composite material. Failure in tension is characterized by fiber fracture while failure in
compression is characterized by fiber micro-buckling. This result would not be the case
for all composite materials and certainly would not be expected for isotropic materials.
The difference in tensile and compressive strengths at large angles of & is again
attributable to differences in tensile and compressive failure modes in the transverse (T)
direction. Relatively low tensile strength in the transverse direction of a lamina (ply) is
typical as the matrix material fractures with multiple cracks forming parallel to the fiber
reinforcement. This effect is minimized in composite structures by stacking plies at
varying angles to achieve quasi-isotropic behavior.

6.1.2 Maximum Strain Theory

This failure criterion states that failure occurs when strains in any of the natural (material)
axes exceeds the corresponding allowable strain. Thus the following inequalities must be
satisfied to avoid failure

& <&y

&r <&y (6.6)

Yo<7Viru

If the normal strains are compressive, then ¢, and &, are replaced by the allowable
compressive strains as below

g <&,
(6.7)
& <&ny

A value for the factor of safety could be defined for the maximum strain failure theory as
the minimum ratio of allowable strain divided by the applied strain.

Again consider an orthotropic lamina subjected to a stress o, making an angle 6 with

the longitudinal fiber direction (see Figure 6.1). Substituting values for the stresses in
material coordinates into the compliance equations (3.19) yields the following.
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[ 1 —rn 0 ]
g, _EL ElT o, C0s* @
£ b= Ey LLT & 0 o, _s,inz 0 (6.8)
Vit . 1 —o,sin@cosé

| GLT _

Carrying out the matrix multiplication and combining with the maximum strain criteria
gives the following inequalities.

Ox E e 1
o, O (cos’@-v sin’@)

E
Oy < 181U — 1 . (6.9)
oL o, (sin®@-v  cos® )

Oy <GLT7LTU 1

oL o, Sin@cosd

If we assume that the material behavior is linear elastic to failure, these inequalities can
be simplified by substituting

ou=E. &,
o, = Eréqy (6.10)
Ty =G 7w
Thus, in this example, the maximum strain criteria given in (6.9) reduces to

Oy 1
< 2 ]
o, (cos"@—v sin”@)

Ox (w1 (6.11)
o, O (Sin“@-v ;cos” )

Ox i 1
o, O Sin@cosé
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When the applied stress o, is compressive, the first of these two inequalities are

modified by replacing the tensile strength values with their corresponding compressive
strength values. The third inequality in (6.11) remains unchanged as it involves the limit
on shear strain which is unaffected by whether or not the loading is tensile or
compressive. The maximum strain criteria for compressive loads becomes

Ox oL 1
o, 0o (cos®?@-v . sin?6)

(6.12)
oy Oy 1
o, O (sin?@-v ;. cos’)

Comparing the maximum strain criteria to the maximum stress criteria, we see that the
criteria look identical except for the Poisson’s ratio terms. Therefore the differences in
the failure predictions of these two theories are minimal. It should be noted, however,
that if the composite material does not behave linearly elastic to failure then the
predictions can be quite different.

Considering the same E-glass epoxy lamina, again for any particular value of &, the
inequality giving the lowest value of strength is the appropriate failure prediction. The
off-axis strength predictions using the maximum strain criteria are plotted below for
values of @ ranging from 0° to 90°. The strength results are again plotted in terms of

normalized stresso, /o, .

e Tension
= = Compression

Normalized Stress
o
(0))]

-y o

Q @ N N

Off-Axis Angle (Degrees)

Figure 6.3. Normalized Stress o, /o, Related to Off-Axis Angleé,
Maximum Strain Failure Theory
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The results in this case are virtually identical to those obtained using the maximum stress
criteria.

6.1.3 Hashin Quadratic Theory

As a third example of a separable failure criteria, consider the quadratic strength theory
as developed by Hashin [12]. In this criteria, there is coupling between extensional and
shear modes of failure.

It is not uncommon in applying Hashin’s failure theory to replace the transverse (out-of-
plane) shear strength 7., with the in-plane shear strength value z . This assumption
modifies Hashin’s compressive matrix failure prediction. This is to some extent due to
the difficulty in experimentally quantifying the transverse shear strength. Also there is
some question as to the logic of including an out-of-plane strength term in a two
dimensional plane stress formulation. In any event, there is a certain compensation of
errors in replacing 7, with 7 4, in Hashin’s 2-D formulation [11].

Hashin based his formulation on logical reasoning rather than micromechanics. This
criteria has been successfully applied to progressive failure analysis of varying laminate
ply lay-ups by using in-situ unidirectional strengths [13]. Use of in-situ strengths
provides a method to account for the constraining interactions between plies.

The governing equations are listed below for a biaxial state of stress.

Fiber Mode (Tension)

2 2
(“L ] +( fur ] <1 (6.13)
Oy Tty

Fiber Mode (Compression)

o, <0 6.14) (same as maximum stress criteria
L LU

Matrix Mode (Tension)

2 2
(”T ] +( fur } <1 (6.15)
Oy Tty

Matrix Mode (Compression)

2 , 2 2
[ s J + [ I } -1 O-,T +[T”J <1 (6.16)
2Ty 2Ty Oty Tty
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Note that a factor of safety for quadratic failure theories, such as Hashin and those
described in the following sections could simply be defined as the square root of the
minimum reciprocal of the left hand side of a quadratic equation such as (6.15).

Again consider an orthotropic lamina subjected to a stress o, making an angle 6 with
the longitudinal fiber direction (see Figure 6.1). Assuming that z,,,, = 7 7, and using the

same E-glass epoxy properties, the inequality giving the lowest value of strength is the
appropriate failure prediction.
Substituting stresses in material (LT ) coordinates from (6.3) into (6.13) gives

2 2

2
(o2 (o2 .
—X—sin®@cos’ § =1 (6.17)
O-LU Oy TLTU

Rearranging yields the normalized stress for the tensile fiber failure mode as

Ix _ L (6.18)

Oy 2
cos’ 0+ Y sin®@cos? @

TLTU

For the compressive fiber failure mode, we have the equivalent of the maximum stress
criteria. This constraint is written as

oy 1 o,

= 6.19
o, C0s’8ao, (6.19)

Substituting the stresses into (6.15) gives the criteria for tensile matrix failure as

2 2 2 2
(o2 O . O (02 .

———%sin® §+ ———Fsin’ @cos’ 6 =1 (6.20)
Oy Oy O TLru

Solving for the normalized stress gives

Ix _ L (6.21)

Oy O'2 2
\/ sin ¢9+ Y sin? @cos? @

O-TU Z-LTU

Finally, for the compressive matrix failure mode in this example we have from (6.16)

2 2 2 12
Ix {a sin® @+ 7LV sin? g cos? 0} Ix LGTU —1JG,LU sin?@-1=0 (6.22)
O

2 2 2
o L4 TLTU Az Oy
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As can be seen, (6.22) is a quadratic equation which can be solved foro, /o, . Again

note that the inequality giving the lowest value of strength is the appropriate failure
prediction. Results are plotted below for the E-glass epoxy lamina. The Hashin quadratic
criteria is compared to results previously obtained using the maximum stress criteria. It
can be observed that the failure predictions are in close agreement for applied
compressive stresses, however the maximum stress theory over predicts strength in this
example when the applied stresses are tensile in nature.

1

% Max Stress-T
@

% 084 \N\ | ----- Max Stress-C
8 0.6 = = = Hashin-C

N Hashin-T

@

£

o

zZ

') ,»Q ENIRAN P

Off-Axis Angle (Degrees)

Figure 6.4. Normalized Stress o, /o, Related to Off-Axis Angle@,
Hashin Quadratic vs. Maximum Stress Failure Theories

There is evidence that when a composite is subjected to a combined o ,7 ; loading, it
becomes stronger when o is compressive. This implies that the in-plane shear stress
7, at failure corresponding to o, =—o, is appreciably greater than the shear stress 7, ;
at failure corresponding to o; =+0c, [14]. Sun et al. [15] proposed an empirical

modification to the failure criteria proposed by Hashin in 1973 [16] for matrix
compression failure to account for the beneficial role that compressive o, has on matrix

shear strength. This modification is written as:

Matrix Mode (Compression)

2 2
[”j } +[ fur } <1 (6.23)
Oy Tioru — N0t
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In this expression, 7 is an experimentally determined constant and can be thought of as
an internal material friction parameter. The denominator in the shear stress term is
effectively an in-plane shear strength term that increases with the transverse compressive
stress o . This modification to Hashin’s criteria for compressive matrix failure is not
pursued further here due to the added complexity required to experimentally determine
the friction parametern. For additional insight into this particular modification to
Hashin’s criteria and into other alternative criteria requiring more extensive
experimentation see [11,13,14].

6.1.4 Chang Quadratic Theory

As a fourth and final example of a separable failure criteria, consider the quadratic theory
as developed by Chang et al. [17-18]. Actually the Chang criteria presented here evolves
from the references cited and is the version used in the finite element based computer
code MSC Dytran, see [11]. This criteria is a modification to Hashin’s criteria and
therefore couples the extensional and shear modes of failure. The governing equations are
listed below for the biaxial state of plane stress.

Fiber Mode (Tension)

[ il } +T <1 (6.24)

2
[ I } +T <1 (6.25)
Matrix Mode (Compression)

2 , 2
( I ] + (GT“ ] -1 o-,T +T <1 (6.26)
27 1 27 1 Oty

In these expressions, the quantity T takes the form

T 2 1+2aGLTTiT
T=| - (6.27)

3
Fury 1+EaGLTTETU

Here a is an experimentally defined coefficient used to represent the nonlinear in-plane
shear strain-stress behavior as represented below.

©2012 John J. Engblom Page 35 of 105




www.PDHcenter.com PDHonline Course M426 www.PDHonline.org

T
Yir = ——+ar; (6.28)
LT

Observe that for a = 0 these failure criteria reduce to Hashin’s criteria except that the in-
plane shear strength 7, ., replaces the transverse (out-of-plane) shear strengthz ., .
Furthermore, for shear dominated failures where 7 ;is the dominant stress and
7.+ — T, the Chang criteria again reduces to the Hashin criteria.

As before consider an orthotropic lamina subjected to a stress o, making an angle 6

with the longitudinal fiber direction (see Figure 6.1). For E-glass epoxy, the inequality
giving the lowest value of strength provides the appropriate failure prediction.

Substituting stresses in material (LT ) coordinates from (6.3) into (6.24) gives

o’ ol o, .
—*-cos’ 0+ L—x%smz @cos’ @ [T(6) =1 (6.29)

2
Oy Oy Ty

For T (@) we have the following.

2
1+ zozGLT O-—Zxo-fu sin® @cos’ @
T() = ":%LU (6.30)

1+ EaGLTTETU

Rearranging (6.29) yields the normalized stress for the tensile fiber failure mode as

Ix _ L (6.31)

o 2
- \/cos“ 0+ ( LU §in2 gcos? G]T 6)

2
TL1u

Substituting the stresses into (6.25) gives the criteria for tensile matrix failure as

0_2 0_2 ) 0_2 0_2 )
—X "Lsin® @ +| —*—+Y-sin*@cos’ 9 [T (0) =1 (6.32)

2 2
Oy Oy O Ty

and solving for the normalized stress gives

ox _ : 21 (6.33)
o
- \/02“ sin4¢9+[02“’sin2¢90052¢9}T(9)
o Tiru
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Finally, for the compressive matrix failure mode in this example we have from (6.26)

2 2 ’2
O'zx O-%Sin40+ Oy ( O'EU _1J0'|'_u sin20+T(¢9)—1=O (6.34)
Oy 4T O \ v TU

Clearly (6.34) is a quadratic equation which can be solved foro, /o, . Again note that
the inequality giving the lowest value of strength is the appropriate failure prediction.

Results are plotted below for the Chang quadratic criteria and are compared to the results
previously obtained using the Hashin criteria. The coefficient « is based on a least
squares fit to experimental data obtained for E-glass epoxy [7]. Note that compressive
fiber failure is not considered by the Chang failure criteria. Thus for small values of @
(less than 6° in this example), the Chang criteria makes no valid prediction and the
limiting failure curve for compressive loading is simply cut off for small values of @. In
this particular example, the Chang and Hashin criteria are in close agreement. However,
it should be noted that while all of the failure criteria under consideration can be
implemented in a material nonlinear analysis, nonlinear material behavior is explicit in
the Chang criteria due to the representation of shear behavior in (6.28). Thus the results
obtained in this example with the Chang criteria are oversimplified because the results
are based simply on a linear analysis using classical lamination theory.

1.2

0.4 «

?

()] - = = .

=5 08 Hashin-C
2 Hashin-T
_g O6f_..- N Chang-T
(_6 ......

£

)

Z

0.2

N o
Off-Axis Angle (Degrees)

Figure 6.5. Normalized Stress o, /o, Related to Off-Axis Angle@,
Hashin Quadratic vs. Chang Quadratic Failure Theories
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6.2  Generalized Strength (Failure) Theories

6.2.1 Tsai-Hill Theory

A failure theory for anisotropic materials was proposed by Hill [19]. The theory as
proposed is actually a yield criteria but in the context of composite materials the yield
strengths are treated as limits on linear elastic behavior. Therefore Hill’s yield strengths
are treated herein as failure strengths. Hill’s yield criteria is an extension of the well
known and much applied von Mises yield criteria for isotropic materials. The von Mises
criteria is related to distortional strain energy and not to dilatation (change in volume). In
the case of orthotropic materials distortional and dilatational effects can not be separated,
thus this theory as applied to composite materials is not a distortional energy theory.

The failure strength parameters in Hill’s theory were first related to the failure strengths
of an orthotropic lamina by Tsai [20]. Thus this failure theory for orthotropic lamina is
referred to as the Tsai-Hill theory. It is also referred to as the maximum work theory.
Experimental support for this theory has been demonstrated by several authors, e.g., [21].

Hill’s criteria for yielding of anisotropic materials has the form

(G+H)o! +(F +H)o? +(F +G)oi —2Ho 07 - 2Go, 0y — 2F 007,

, , ) (6.35)
+2Lrq +2Mz 1 + 2Nz <1
The failure strength parameters can be related to the usual failure strengths by
considering the separate application of simple stress states. Consider first that 7 ; acts
alone. Based on the criteria in (6.35) this gives

IN=—1_ (6.36)

2
TLtu

If o acts alone we have

G+H-=

2
Oy

When o acts alone, criteria (6.35) gives

F+H=

2
Oy

and if o acts alone
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F+G=

2
Oty

Combining the above three equations provides definition of three strength parameters.
These parameters are given as

M
Oy Omn O7y
2G = ]2' + ]2' - ]; (6.37)

1 1 1

2 2 2
Oy O7y Oy

For the biaxial (plane) stress state of interest we can assume that the through-the-
thickness of the lamina stresses are essentially zero. This gives

Op =Ty =7 =0 (6.38)

If we consider the cross section of a typical lamina (ply) as depicted in the sketch below

i
ONORCNONORE)

ONONONONONO) aun gy
OQ00000{ *

Figure 6.6. Cross Section of Unidirectional Lamina
With Fibers in L Direction

and simply consider the geometrical symmetry, it is concluded that
Oy =01y (6.39)

Substituting (6.38) and (6.39) into (6.37) gives
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2H =2G =—;
Oy
(6.40)
Oy Oy

Rearranging the strength parameters in (6.40) yields

G+H-=

(6.41)

2
Oy

and

F+H=

(6.42)

2
Oy

Substituting the strength parameters into (6.35) gives the Tsai-Hill failure theory for the
case of biaxial (plane) stress. Failure is initiated when the inequality below is violated.

2 2 2
(GL} —GLZGT+[O-T} +(TLTJ <1 (6.43)
Ow 0w Oy Tiru
When normal stresses are compressive, the tensile strengths are replaced with

compressive strengths. It is interesting to see that the Tsai-Hill theory reduces to the von
Mises theory for isotropic materials by making the following substitutions

o,_=0;
O =0
T (6.44)
Tr =0

O =07y =0y
where o, and o, are the principal stresses for the isotropic material and o, the yield
strength. For an isotropic material, (6.43) then reduces to the von Mises yield criteria as
below

o1 —0,0,+0% <o’ (6.45)
The Tsai-Hill failure theory given in (6.43) provides a single function to predict strength.

Again consider the same example of an E-glass epoxy (angled ply) lamina with stress
o, applied (see Figure 6.1). Substituting the stresses in natural (material) coordinates

into (6.43) in this example yields the following for the case of tensile loading
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2 2 2
O LU . O LU . O L
cos’ @+| ————1|cos’ @sin’ @+ ——sin* @ < —; (6.46)
T LTU O TU O X

A similar expression is obtained for the case of compressive loading

2 2 2 2 2
(o) O L O L . O LU . O LU
2| cos’ @+ | ———— [cos® fsin® @+ ——sin @< —; (6.47)
o T'uu oy Oy ox

For plotting purposes, these equations can be written in the general form

Oy
Oy

< f(ow.,on 70w, 0L,0m) (6.48)

The off-axis strength predictions using the Tsai-Hill criteria are compared to the
maximum stress criteria for values of & ranging from 0° to 90°. The strength results are

again plotted in terms of normalized stressoy /o .

1.2 -
1 -
Tsai-Hill-T
0.8 T - - = Tsai-Hill-C

Max Stress-T
------ Max Stress-C

0.6 +..

0.4 1

Normalized Stress

0.2 1

Q 1) ,\/Q N O o

Off-Axis Angle (Degrees)

Figure 6.7. Normalized Stress o, /o, Related to Off-Axis Angle@,
Tsai-Hill vs. Max. Stress Failure Theories

The Tsai-Hill theory predicts lower strengths than those predicted by the maximum stress
theory and has been shown to be in better agreement with experimental data than those
results obtained using either the maximum stress or maximum strain theory [9]. One
reason for the better agreement with experiments is the fact that there is considerable
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interaction between the failure strengths (o, ,0q, .77, ) In the Tsai-Hill criteria. This
interaction does not exist for either the maximum stress or maximum strain criteria, i.e.,
in the latter two theories, axial, transverse and shear failures are assumed to occur
independently.

In this example of applying o, to an angle ply with @ ranging from 0° to 90°, the Tsai-
Hill and Hashin quadratic strength theories are in close agreement when the applied stress
state is tensile, as shown in Figure 6.8 below. This is primarily because these strength
theories each exhibit coupling between axial and shear deformation under a tensile stress
state. For a compressive stress state, the Hashin criteria is more similar to the maximum
stress criteria, particularly for low values of @ .

1.2 -
g
% 0.8 Tsai-Hill-T
= | N\ | Tsai-Hill-C
_g 0.6 Foo-- = = = Hashin-C
© h in-
e 04+ Hashin-T
o
Z 0.2-- K - -y =

o +++-+++++++++++A

Q ') \9 [ENTIRON o

Off-Axis Angle (Degrees)

Figure 6.8. Normalized Stress o, /o, Related to Off-Axis Angle@,
Tsai-Hill vs. Hashin Quadratic Failure Theories

6.2.2 Tsai-Wu Tensor Theory

A way to theoretically improve the correlation between theory and experiment for
strength theories is to increase the number of terms, particularly with respect to terms
relating to the interaction between stresses in two directions. Tsai and Wu [22]
accomplished this objective in their tensor strength theory for composites. They
postulated a failure surface in stress space of the form

Fo,+Fo0, =1 ij=16 (6.49)
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wherein F; and F; are strength tensors of the second and fourth rank. The usual

contracted stress notation is used, i.e.,o, =7, o =7 andoy =7 ;. For the case of
an orthotropic lamina under plane stress conditions, (6.49) reduces to the form

Fo +F,o; +For + FMO'E + |:220'T2 + F66TET +2F,0,0; =1 (6.50)

The linear strength constants serve to represent different strengths in tension and
compression. Quadratic strength constants provide the representation of an ellipsoid in
stress space. The F,, term is the basis for representing the interaction between the normal

stresses in material coordinates. The ability to represent the interaction between o, and
o; provides more generality than achieved with the Tsai-Hill theory. Of course, more

experimental data is required in that some tests are needed with the application of either
biaxial stresses or an off-axis uniaxial stress.

All of the strength constants in equation (6.50), except for the interaction term F,,, can be

defined on the basis of simple uniaxial or pure shear testing. Note that all of the strength
quantities, including o], andoy,, are treated as positive quantities in the following

equations.

First consider the case where the only nonzero stress iso, # 0. Loading the uniaxial
specimen to failure gives

2 .
Fow +Fuol =1 (tension)

2 .
Fiol, + Fuoy =1 (compression)

Then solving for the strength constants yields

1 1
F=————
Owu Ow
(6.51)
1
Fun= ’
O u0OLu

Similarly, applying the only nonzero stress o to a uniaxial test specimen until failure
gives

F,oq, + Fhoi, =1 (tension)

F,ol, + Fholi =1 (compression)
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Solving for the strength constants

F, = = - :!-
O Oy
(6.52)
1
F,, = '
OOty

Applying pure shear z,; in material coordinates gives the following

Fs=0 (because sign of shear not important in LT coordinates)
FGGTiTU =1
or
1
Fee =— (6.53)
Tty

The remaining interactive term F, can be determined based on the performance of
biaxial stress tests. For example, consider the biaxial stress state o, = o; = o and other

stresses zero. Here, o is the biaxial stress required to produce failure in the specimen.
Substituting into (6.50) gives

(Fl + F2)0'+(F11 +F,+ 2F12)0-2 =1

Solving this equation for the interactive term gives

1
F, = P(1— C,o0-C,0?) (6.54)
where
C, = i :!- + - ],-
Ow Ow O Oy
and

1 1
+

’ 1A
OOy OOty

C, =

Thus the interactive F, term depends on the engineering strengths in the L and T
directions as well as on the biaxial tensile failure strength o . Note that off-axis uniaxial
tests could be used as an alternative to determining the interactive F,term.
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Due to a finiteness constraint imposed on the stress state, the strength constants in the
Tsai-Wu governing equation (6.50) for a two dimensional stress state can be shown to
satisfy the following inequality

A F11F22 < F12 < v F11F22 (6-55)

In practice, this inequality can be used to estimate a value for F,, in lieu of performing
biaxial or off-axis tests.

The Tsai-Wu theory is obviously more general than the Tsai-Hill theory in that the
interactive term involves biaxial stress test results. Pipes and Cole obtained excellent
agreement between the Tsai-Wu tensor theory and experimental data for boron/epoxy
specimens, see [23]. In their tests, the Tsai-Wu and Tsai-Hill predicted strengths were in
close agreement.

As one approach in theoretically specifying the interactive strength termF,,, consider

normalizing the governing Tsai-Wu equation (6.50) in the following manner. Define
normalized stress and strength terms as below

*

o, = Fyo_
O-T* =\JFyo;
TLT* =\ FesT0r
(6.56)
* F
F, = L
Fu
* F
F, = 2
Fa
FlZ* = P = _E

- \lFllFZZ - 2

Substituting these forms into (6.50) yields a particular normalized form of the governing
Tsai-Wu strength criteria as given here

*

o, -o,0; +to; +7; +Fo +F,0; =1 (6.57)
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Here the linear terms determine the center of the ellipsoidal failure surface. For the case
of zero shear (z,; = 0) equation (6.57) is a generalization of the von Mises criteria. The

von Mises criteria can be written as

* * *

o -0 o +o; =1 (6.58)

This is an approach that has been suggested by Tsai and Hahn [25] to theoretically define
the interactive strength term F,, as an alternative to biaxial or off-axis strength testing.

In order to again consider the E-glass epoxy (angled ply) lamina with stress o, applied
(see Figure 6.1), consider writing the Tsai-Wu criteria in the following normalized form.

2 2 2
[l— O ] o, +[1_ Omy ] Or + Ow O, + Owny O7 + Tir

2 2 2
Oy )OOy Orw JOw O O O Ory Trmu (6.59)
o O
L Ot
+ 20,0, Fp, =1
L O1u

The applied stress o, is transformed to material coordinates as given in equation (6.3).
Substituting these stresses into (6.59) and using the theoretical assumption for the
interactive strength term F,, from (6.56) gives

2

[1——GL“ J_Gx cos? 0+£1— Ty J{GL“J Ix ginzg4 T —GZX cos* @

Oy )0y Ot \O1u JOLu Oy Oy
2 2 2 2
(o2 (02 (02 . (o2 O .
+— ( ;UJ X sm“0+[%j—2xsmzecosze (6.60)
O \O1u /Oy Tty JO Ly

2
(o2 (o2 (o2 (o2 .
_Ow / w %tu 2x sin20cos’d =1
Oty VO Oy Oy

This is a quadratic equation which can be solved for Ix

as a function of @ . Writing the
O

quadratic equation in the form

2

O
- +B

O O

Oy

A +C=0 (6.61)

The coefficients in this quadratic form can be defined as follows
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2 2
A=t cos40+0io-%sin40+ GZL“ _ 9w 9w 9 sin2geos?l  (6.50)
O Oqy Oy Tit7u Ot VO Ot
B= Ll—GA]cos2 0+ Ll—al]ﬂsinz 0 (6.51)
Oy Orw )0ty
C=-1 (6.52)

The off-axis strength predictions using the Tsai-Wu criteria are compared to the Tsai-Hill
criteria for values of & ranging from 0° to 90°. The strength results are again plotted in
terms of normalized stresso, /o, . These results are plotted for interactive strength term

values (F,, ) of +1/2 and -1/2 in order to show the sensitivity of the results to variation in

the interactive strength term. Note that F,, =-1/2 is the theoretical assumption used in
writing equation (6.48) above and is also the assumption suggested by Tsai and Hahn
[24] in order to make the Tsai-Wu criteria look like a generalized form of the von Mises
criteria. The off-axis results coming from the Tsai-Wu criteria are plotted vs. the Tsai-
Hill criteria below for the case of applied tensile stress.

1.2 -
Tsai-Hill-T

2 14
I I U Tsai-Wu F12=0.5*sqrt(F11*F22)
¢n 0.8 1 )
- = = = Tsai-Wu F12=-0.5*sqrt(F11*F22)
N 06T
S 044
Z 024

o -+

Q ©» ,@ (50 <00 QQ

Off-Axis Angle (Degrees)

Figure 6.9. Normalized Stress o, /o, Related to Off-Axis Angle@,
Tsai-Wu vs. Tsai-Hill Failure Theories (Tension)

It is observed in Figure 6.9 that the predicted strength results for the applied tensile stress
are not sensitive to variation in the interactive strength term. Furthermore, the strengths
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predicted by the Tsai-Wu criteria are in excellent agreement with those predicted by the
Tsai-Hill criteria for the full range of off-axis angle @ .

When the applied stress is compressive, the strength results are somewhat more sensitive
to variation in the interactive strength term (Flz*) as observed in Figure 6.10 below.

Again the Tsai-Wu and Tsai-Hill results compare favorably, however, the Tsai-Wu
criteria predicts higher strength values for a range of off-axis angles away from the 0° and
90° end points. Overall, for the particular case of applying a uniaxial tensile or
compressive stress to an off-axis specimen the Tsai-Wu and Tsai-Hill failure criteria are
in reasonably good agreement.

0.7 T
Tsai-Hill-C
0.6 + ,
o IN. Tsai-Wu F12=0.5*sqrt(F11*F22)
Q 054+ i =
= = = = Tsai-Wu F12=-
)]
ko) 04 T
8
'c—é 0.3 +
5 0.2 +
bz
0.1+
o +-+-+-+++++—+—+—-+—++—++-++++++4
Q 2 NS S IR &

Off-Axis Angle (Degrees)

Figure 6.10. Normalized Stress o, /o, Related to Off-Axis Angle@,
Tsai-Wu vs. Tsai-Hill Failure Theories (Compression)

6.3  Another Example Comparing Failure Theories

As a further example of applying the various strength theories, consider again the biaxial
state of stress used in the first example. The applied stress state is given as o, = 20 MPa,
o, = 40 MPa, and r,, = 0. The fiber reinforcement (L axis) is oriented at & = 60° with

respect to the reference X axis. The stresses in natural (material) coordinates were
previously calculated as o, = 35 MPa, o; =25 MPg, and 7 ; = 8.66 MPa. Assuming

the E-glass epoxy properties as previously defined, the results for each of the strength
criteria are given below.
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Max. Stress Criteria

o, o

—0.03296 <1: ~08062<1: —T -0.1203<1

Oy Oy Ty

Max. Strain Criteria

Substituting the compliance relation (3.19) into the maximum strain criteria (6.6) and
assuming linear elastic behavior to failure gives

L L L
normalizing gives
I S PN 0.26(£] =0.2684 <1
oL oW 1062 1062
O O
L T T
again normalizing
v e T or - .0557(3—5j +25 07436 <1
O Ory 31) 31
Tir T
}/ — —_—
o GLT GLT

normalizing gives

T _0.1203<1 (same as for max. stress criteria in case of shear stress)

TiTu
Hashin Quadratic Criteria

Substituting stresses and strengths into (6.13) and (6.15) respectively gives

2 2
35 1 [866) _1555<1  Fiber Mode (Tension)
1062 72
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2 2
[Ej + (@j =0.6648 <1 Matrix Mode (Tension)
31 12

Chang Quadratic Criteria

Substituting stresses and strengths into (6.24) and (6.25) gives

2 2
( 35 ) +(8'66j T =0.00442 Fiber Mode (Tension)

1062 72

2 2
25) (866) - _ g 654 Matrix Mode (Tension)
31 72

Here, T as defined in (6.27) involves the experimental coefficient « , see [7].
Tsai-Hill Criteria

Substituting the stresses and strengths into (6.31) gives

2 2 2
( 35) _35(252){@} +(8.66j 0665 <1
1062) 10622 |31 72

Tsai-Wu Criteria

Substituting into (6.47) and assuming the strength interaction term F,” = —1/2 gives

2 2
(1—1.741)—1322 +(1-02627)2 + 1062[ S j - [éj

31 610 \ 1062 118\ 31

+2(1062)(31)(=1.027x10°%) —>_ | 22 = 0.7395 <1
1062 )\ 31

In this particular example, the maximum stress, Hashin, Chang and Tsai-Hill criteria
make virtually identical factor of safety predictions, i.e., between 1.23 and 1.24.
Maximum strain predicts a value of 1.34 while Tsai-Wu yields a value of 1.16. Separable
failure criteria like Hashin and Chang have an advantage over generalized criteria like
Tsai-Hill or Tsai-Wu by being able to specify the likely mode of failure. This ability is
particularly important when incorporating failure criteria into nonlinear damage models.

6.4  Failure Envelopes (Generalized Theories) for Biaxial Stress State

In the case of isotropic materials, closed failure envelopes (surfaces) can be defined for
the general case of biaxial stresses. These failure or yield envelopes are defined in terms
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of principal stress coordinates. A good example is the von Mises yield surface as
previously defined in equation (6.45), which is represented as an ellipse in principal
stress space. It is not possible in the case of an orthotropic lamina to define such a general

graphical representation for the biaxial stresses o ,0; and 7z ;acting in the natural

coordinate directions. This is because the principal stresses do not, in general, coincide
with either a set of reference axes or the longitudinal and transverse directions. The
principal stress directions align with the longitudinal and transverse directions only for
the special case wherez , = 0. Failure envelopes can be defined in terms of normalized

stresses in natural coordinates, i.e., o, /o, and o; /oy, for a specified value of shear
stressz,; . As the shear stress is increased, the failure envelopes shrink resulting in
reduced feasible design space.

Consider first the Tsai-Hill failure surface based on the E-glass properties used in
previous examples. Because the Tsai-Hill strength criteria is adjusted to accommodate
compressive stresses, the resulting closed failure surface is piecewise continuous in the
normalized natural stress coordinate space. This failure surface is plotted below for the
case of zero shear and the case ofz ; /7, =0.5. The intercepts on the compressive

stress axes differ from those on the tensile stress axes because o), #o,
ando;, #0q,. In the case of zero shear stress, these intercepts occur at
o; /o, =04, /oq, =3.806 and ato, /o, =0, /0o, =0.5744. Adding shear stress
reduces the feasible design space as anticipated.

2 4
o, /0
Lo “1.: . 004:0 N R
.0:_+ + + + ‘.
o F Tay Te
o & & T %
¥ L] L4 L] $ ¢
A5 4 : }{ 5 ’ 0.5 A 1.5
P 3
s s
»> *
: 1 i o, /O'LU
. + + .
.+ + .
. + + .
. 4+ -2 < + .
. + + .
* + + 3
+« 4+ + .
. + -3 - + .
. + + + .
+F
. Tkt 20
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Figure 6.11. Tsai-Hill Failure Surface Plotted in Normalized Natural Coordinate
Stress Space for E-Glass Epoxy Lamina (7, /7,5, = 0and 0.5)
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The failure surface representation of the Tsai-Wu tensor criteria is simply an ellipse in
these same natural stress coordinates, as shown in Figure 6.12 below. This plot is based

on assuming the interactive strength termF,, = —1/2. Again, the addition of a shear
stress component reduces the feasible design space.

2 -
or /GTU
1
-~ - -
-
/
P
e .;
-1.5 -0.5 9
-1 -
-2 4
.3 4

Figure 6.12. Tsai-Wu Failure Surface Plotted in Normalized Natural Coordinate
Stress Space for E-Glass Epoxy Lamina (7 ; /7.y, = 0 and 0.5)

As with the Tsai-Hill criteria, the compressive stress axes intercepts occur at
o; /o, =04, /o, =3.806 andat o, /o, =0, /o, =0.5744 for zero shear stress.

For this particular case of E-glass epoxy, the Tsai-Hill and Tsai-Wu failure surfaces are
compared in Figure 6.13 below. Again in this graphical representation, the interactive

strength term for the Tsai-Wu criteria is assumed to be F,,” = —=1/2..

Clearly the two failure criteria are in reasonable agreement in three quadrants but differ
significantly in the fourth quadrant where both o, and o are compressive. Remember

that the interactive strength term has been assumed in this case rather than determined
through experiment.
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Figure 6.13. Tsai-Hill vs. Tsai-Wu Failure Surfaces Compared for
E-Glass Epoxy Lamina (7,; /7,5, = 0)

For the Tsai-Wu failure criteria, it is interesting to note that the interactive strength term
F,, governs both the slenderness ratio and inclination of the major elliptical axis. The

major axis has an inclination of +45° for negative F,, and -45° for positive F,, . This
effect of the interactive strength term is demonstrated in Figure 6.14 below for the E-
glass epoxy lamina under consideration. The Tsai-Wu failure surfaces are plotted for
F, =-1/2andF, =+1/2. Remember that this negative value of F, is the value
proposed [24] to make the Tsai-Wu criteria represent a generalized version of the von
Mises failure criteria. Figure 6.15 compares the Tsai-Wu failure surface for interactive

strength term values F,,” = —1/2and F,,” = —1/4 to the Tsai-Hill failure surface.

It is observe in Figure 6.15 that varying the interactive strength term from -1/2 to -1/4
brings the Tsai-Wu and Tsai-Hill failure predictions into better agreement in the fourth
quadrant of natural stress space. Of course, these interactive strength term values are
simply analytical assumptions. These results clearly demonstrate the importance of the
interactive strength term in defining the Tsai-Wu failure surface, particularly when the

natural stresses o, and o, are compressive.
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Figure 6.14. Tsai-Wu Failure Surface for E-Glass Epoxy Lamina With
Different Interactive Strength Terms (z; /7,7, = 0)
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Figure 6.15. Tsai-Wu vs. Tsai-Hill Failure Surfaces for E-Glass Epoxy
Lamina with Interactive Strength Terms (z,; /7., = 0)
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6.5  Effect of Shear Stress Direction on Lamina Strength

The shear strength of an orthotropic lamina is dependent on the direction of the shear
stress when this stress is applied in reference axes different than the material (natural)
coordinates. Consider reference axes at an angle of 45° to the natural coordinates as
sketched below

/ N

Positive Shear Negative Shear
Stress Stress

Figure 6.16. Shear Stress 7, Applied in XY Coordinates
at 45° to Natural LT Coordinates

Application of the positive shear stress results in a compressive stress in the transverse
(T) direction and tensile stress in the fiber (L) direction. Conversely, application of the
negative shear stress results in tensile stress in the transverse (T) direction and
compressive strength in the fiber (L) direction. Typically, o, <oy, ando|, <o, -

Therefore, the lamina in this case is more likely to fail when the negative shear stress is
applied. These results can be shown mathematically by going back to the transformation
given in equation (5.1). This transformation from reference to natural coordinate stresses
can be written in this case as below.

o, 0
o t=[Tk 0
Tt Txy

For@ = 45°, the stresses in natural coordinates for positive z,, become

O, =+7y, SiN20 = +7,
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O =—Ty SIN20 =—-1,,
Ti1 =Ty €0520 =0

and the sign of these natural stresses reverse for negativez,, . Again, the lamina is more

susceptible to failure for the negatively applied shear stress in this case because of
differences in strengths in the Land T directions. Thus off-axis shear strength of an
orthotropic lamina depends not only on the fiber orientation but also on the direction of
the applied shear stress.

7.0  ANALYSIS OF LAMINATED (MULTI-LAYERED) COMPOSITES

In a unidirectional composite, the ratio of longitudinal strength (or stiffness) to transverse
strength (or stiffness) can be varied by changing the constituent materials and also by
varying the volume fraction of fibers. Longitudinal behavior is controlled primarily by
fiber properties while transverse behavior is matrix dominated. Generally the transverse
properties of a unidirectional composite are unsatisfactory in most engineering
applications. While this is an undesirable property of unidirectional composites in many
instances, this characteristic is overcome by forming laminates from a number of
unidirectional layers. A laminate is formed when two or more laminae (plies) are bonded
together to act as an integral structure. Each lamina in the laminate has its material
(natural) coordinate axes oriented at some desired off-set angle with respect to the
reference coordinates. The intent is to achieve a set of desired properties in all directions.

7.1  Specifying Stress and Strain Variation in a Laminate

The bond between the laminae is assumed to provide continuity between neighboring
plies, i.e., no slippage between plies occurs in an undamaged laminated structure. A
relationship is needed to define strain as a function of displacement and curvature.
Consider deforming a section of a laminate in the x-z plane as depicted in Figure 7.1
below. Assume that face ABCD originally straight and perpendicular to the mid-plane of
the laminate remains straight and perpendicular to the mid-plane after deformation. This
assumption that plane sections remain plane and perpendicular to the mid-plane
effectively assumes that the through-the-thickness shear deformations y,, and y,, are
negligible. This kinematic representation is referred to as the Kirchoff hypothesis and is
normally a reasonable assumption for thin laminated composite plate and shell structures.
The approach taken here is referred to as the classical lamination theory, for example see
[25].
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Figure 7.1. Bending of Laminate in X-Z Plane

Assume that point B at the geometric mid-plane undergoes displacements u,,v,and

w, along the x, y and z axes, respectively. It follows that displacement in the x direction
at point C is given as

u=u, -z (7.2)

where g is the slope of the laminate mid-plane in the x direction, i.e,

oW, (7.2)

p= OX

Substituting (7.2) into (7.1) gives an expression for displacement in the x direction as

u=u —26W° (7.3)
OX

Similar reasoning for displacement in the y direction at a geometric distance z from the
mid-plane gives

V=V, -1

ow
° 7.4
o o (7.4)
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Displacement w in the z direction, normal to the laminate plane, is the displacement of
the mid-plane w, plus the stretching (or shortening) of the normal, i.e.

w=w, + stretching (shortening) of normal

It is assumed that this stretching (shortening) of the normal is negligible relative to the
displacementw, . Thus the normal (through-the-thickness) strain &, is neglected. This is a

reasonable assumption for thin-walled composite structures. This assumption results in
the interlaminar shear strains being zero. This result is shown by substituting (7.3) and
the assumption that w = w, into the appropriate strain displacement relation. This gives

_ou ow__ow, ow, _

=—+—= 0
Y =5 " ox ox  ox
similarly
ov ow ow, ow,
Vv =1+t = + 0

o oy oy oy
and thus the nontrivial laminate strains reduce to &,,&,,andy,,. These strains are

defined for the derived displacements as

. _ou_du, 9w,
T ox  ox ox>

_av_avo_zazv0

Y T A 2 7.5
YTy Ty oy (75)

_6_u+6_v_6u0+6v0 o*w,
oy Oox oy o oxay

¥V xy

These relationships can be written in matrix form as the sum of mid-plane strains and
plate curvatures.

€y £y Ky
& r=1¢& r+129 Kk, (7.6)
¥ xy ¥ v Ky

The mid-plane strains are written as below.
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r ou,
gf( [5)4
golo] Moo | 7.7)
0 ay
¥ xv ou, ov,
Loy Ox |

The plate curvatures are given as

[ 62w,
K, ox
K bo) OWo | (7.8)
Y ayz
Kxr 82w,
OXoy |

Equation (7.6) represents a linear variation in strains through the thickness of the
laminate. The laminate is comprised of a set of laminae and the stresses in any given
lamina (ply), e.g. the k™, can be defined by substituting (7.6) into the stress-strain
relationship (5.21). The result is written for the K™ lamina(ply) as

Oy gn §12 glﬁ £y ?11 glz §16 Ky
Oy =1Q, Qp Qy & 1+2/Qy Qpnp Qu ky (7.9)
Txy )k | Qw Qzx Qe Y Xy Qi Qz Qs K Ky

While the strain variation is linear through the thickness of the laminate, stress
variation is not linear. The stress gradient varies from lamina to lamina and can differ for
adjoining lamina. Furthermore, stresses are discontinuous at the interface of adjoining
lamina. An example of the stress and strain variation through the thickness of a three ply
laminate is shown in Figure 7.2 below. The differences in stiffness lead to differences in
stress between adjoining lamina.

2

B/ /

Laminate Variation Characteristic Varigtion
Of Strain Moduius Of Stress

Figure 7.2 Hypothetical Three-Ply Laminate with Stress, Strain Variation
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7.2  Relating Resultant Forces and Moments to Strain and Curvature

It is convenient to work with an equivalent system of forces and moments acting on the
laminate cross section as shown in Figure 7.3.

rd
'___ﬁLx A
Y
z

'Iz My ﬁﬁx
Nyy ™ %\MY*%
y/ v N-yx y,/ My}

{a) {b)

Figure 7.3 Resultant Forces and Moments Acting on Laminate

Resultant forces are obtained by integrating the appropriate stresses through the laminate
thickness (h). These resultant forces have units of force per unit width and are written

below for a laminate of thickness h.

h/2

N, = Iaxdz
-hy2
h/2
Ny = [o,dz (7.10)
-hj2
h/2
Ny = J.z'xvdz

—hy2

Resultant moments are obtained by integrating through the laminate thickness as with the
forces, but in this case moment is obtained by multiplying stress by the moment arm with
respect to the laminate mid-plane. These moments are defined as follows

h/2
M, = jo-x zdz
-h/2

h/2
M, = [o,2dz (7.11)

—hy2
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h/2
My, = J.TXY zdz

—hy2

The positive sign convention for these resultant forces and moments is shown in Figure
7.3. Note that the six force and moment resultants form a system that is statically
equivalent to the stresses acting on the laminate. This resultant force/moment system acts
at the geometric mid-plane of the laminate.

The continuous integrals in (7.10) and (7.11) can be replaced by the summation of
integrals over the n orthotropic laminae represented in Figure 7.4 below.

Laming Number
i

¥
- : 4
0o | T2
0, ¥ | Middie
v ho Plane
JTL | | i,
I Pe-t h
h by ¢
hy l""i k
1 n !
Y
z

Figure 7.4 Multi-layered Laminate Geometry with n Laminae (Plies)

These summations have the matrix form

Ny n ohe | 9x

N}=dNy 1= [ 1oy d (7.12)

K=lhK_1
NXY K
and

My n ohe | 9x

M}=3 M, }= o, ¢+ 2dz (7.13)
My e Txy J
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These resultant forces and moments can be related to mid-plane strains and plate
curvatures by substituting (7.9) into (7.12) and (7.13). The resultant forces become

Ny n he Ex hy Ky
N, r=2 QL [ { & fdz+ [k fadz (7.14)
N K=1 N1 },0 1 k

XY XY XY

or in simplified matrix notation

Ny £y ky
N, +=[AR & :+[B] k, (7.15)
Ny 8% Ky

where the coefficients in [A] and [B] are defined as

Aij = Zn_:(@, )K (hK - hK—l) (7.16)
B, =2 2@, -ni.) (7.17)

Similarly the resultant moments come from substituting (7.9) into (7.13).

My n hy £y hy Ky
M, +=Y[QL [ 1 & fzdz+ [k, tz2dz (7.18)

s ¥ % et Ky

In simplified matrix notation the resultant moments become

My £y Ky
M, t=[Bk & t+[DF k, (7.19)
My Y% Ky

Here the coefficients in [D] are defined as

D, =3 3(@), (i -ni.) (7.20)

The total set of six constitutive equations for the laminated plate can be written in
compact matrix form as
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{[[I\I\/II ]]} ) Gg {EDL{@O}}J (7.21)

Here, [A] is denoted the extensional stiffness matrix.[B] is defined as the coupling
stiffness matrix and [D] is the bending stiffness matrix. The mid-plane strains and plate
curvatures are defined as

£x

{£°}= &y (7.22)
¥ v
kX

{k}=1 K, (7.23)
kXY

The extensional stiffness matrix [A] relates the mid-plane strains {g"} to the resultant in-
plane forces, while the bending stiffness matrix [D] relates the plate curvatures {k} to the
resultant moments. Stretching a laminate with nonzero B terms will result in bending

and/or twisting of the laminate along with extensional and shear deformation. Note that
coupling between the extension and bending/twisting of a laminate with nonzero B;; is

not caused by the orthotropy of the plies, but instead is due to nonsymmetric stacking of
the laminate. Ashton et al [26] demonstrated the phenomenon of coupling between
stretching and twisting by applying a simple axial load N, to a two ply [+ 8] specimen.
In their experiment the resultant axial load is related to strain and curvature as

Ny = Augy + Ay +Bikyy
thus the application of axial load N, produces twisting curvaturek,, .

The stiffness matrix relationship given in (7.21) provides a means of determining the
laminate strains and curvatures for a set of applied forces and moments. Having
determined strains and curvatures, the stresses can be calculated on a ply by ply basis
from the constitutive equations given in (7.9). These stresses in reference XY coordinates
can then be transformed to natural coordinates for each ply by applying the coordinate
transformation given in (5.1). Any of the failure theories can be applied in each ply to
determine the factor of safety for the laminate.
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7.3 Including Hygrothermal Effects in Laminate Analysis

Thermal and hygroscopic strains can occur in a body due to temperature and hygroscopic
(moisture) changes. Thermal strain in an isotropic material is defined as the product of
the thermal coefficient of expansion a and the change in temperature AT . Similarly, the
hygroscopic strain is defined as the product of the coefficient of moisture expansion g

and the change in moisture content AC . These strains are written as
&' =aAT (7.24)
" = pAC (7.25)

For orthotropic materials, the coefficients of thermal and moisture expansion are
directionally dependent as is the case for other constitutive properties. Therefore, changes
in temperature and/or moisture produce differences in the longitudinal (along the fiber
reinforcement) and transverse strains (perpendicular to fibers). The thermal strains in the
longitudinal and transverse directions are defined as

g =a AT
(7.26)
& =a; AT

Here «, and a; represent the thermal coefficients of expansion in the longitudinal and
transverse directions, respectively. Similarly, the hygroscopic strains are given as

5F = p.AC
(7.27)
gTH = B;AC

Here B, and g, represent the moisture expansion coefficients in the longitudinal and
transverse directions, respectively.

Total strains can be defined as the sum of the elastic (mechanical) strains and the
hygrothermal strains. These strains are written in concise matrix form as below

{g }TOTAL = {8 }ELASTIC + {3 }HYGROTHERMAL (7.28)

Rearranging the above, the elastic (mechanical) strains in reference coordinates can be
equated to the total strains minus the thermal and hygroscopic strains. The mechanical
strains are then given as
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ex | [ex] [ex]| |ex
e t=<8 t—1& r—18& (7.28)
&) &) |ez) ez

A simple 1-D analogy of the above matrix equation consists of an axial bar constrained at
its ends and subjected to an increase in temperature. Assuming the bar is made of an
isotropic material, the thermal stress is calculated as

Eeinstic = EroraL — GAT

or from Hooke’s law

9 —0-aAT
E

and finally
o = —aEAT

for the constrained axial bar. The same basic approach can be used to calculate
stresses/strains in orthotropic laminates subjected to hygrothermal effects.

Coefficients of thermal and moisture expansion can be transformed from natural LT
coordinates to the reference XY coordinates for the laminate by the following
transformation

ay o,
ay = [T ]_l O (7.29)
Ay /2 0
and
By B
B =[TI"14: (7.30)
By /2 0

Coordinate transformation [T™] has been previously defined in equation (5.6).
Expanding (7.29) gives definition of the thermal coefficients of expansion in reference
coordinates for a given ply at off-set angle @ as
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a, = cos?(@)a, +sin’(0)a;
a, =sin?(@)a, +cos’(0)a; (7.31)

ay, = 2sin(@)cos(8)a, — 2sin(8)cos()a;

Of course, the moisture expansion coefficients in reference coordinates can be similarly
defined by expanding (7.30).

With the expansion coefficients defined in reference coordinates, the thermal and
hygroscopic strains can be defined as below

t’3‘>T< ay
g t=1a, (AT (7.32)
7>T<Y Ayy

and
6‘)'2 By
gl +=1< B, tAC (7.33)
7)?\( Bxv

Substituting (7.6), (7.32) and (7.33) into (7.28) provides definition of the mechanical
(elastic) strains in terms of total mid-plane strains, total plate curvatures and change in
temperature and moisture. This matrix equation takes the form

gQ" £y Ky ay By
g t=46& r+23 k, t—< a, AT =< B, +AC (7.34)
7>'¥|Y Y% Ky Xyy By

Based on matrix equation (5.21) the lamina hygrothermal stresses can be written as

oy £y
o t=[Q} & (7.35)
z'>T<Y 7>'¥|Y

Substituting (7.34) into (7.35) provides definition of the hygrothermal stresses at the
lamina (ply) level as
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0'>T< £y Ky ay By
o b=[Q]{ e bzl k, t-1a, AT -1 B, tAC (7.36)
z'>T<Y ¥ % Ky Qyy Bxv

This matrix equation must be solved for the total mid-plane strains and curvatures caused
by hygrothermal effects. This is accomplished by first substituting (7.36) into (7.12) and
assuming there are no applied loads. We have

0 Ex Ky ] ay
0p= [A] g + [B] ky t— z [6]K ay (hK -h, )AT
0 4% Ky - Ayxy ) «

(7.37)

. Bx
_Z[a]K By (hK - hK_l)AC

K=1
ﬁXY K

In order to simplify the above equation and provide a form amenable to solution, define
the apparent hygrothermal forces as below

’ N \ N rax \
3 NJ >=2[6:|K< ay (hK_hK—l)AT (7.38)
N>T<Y) “ (Zxy )«
LTS
3 NYH >=2[Q]K< By ¢ (hK _hK—l)AC (7.39)
H K=1
NXYJ JBXY) K

Matrix equation (7.37) can now be written in the form

N>T< N)T 8?( kx
NJ L+d NI E=[AR &2 t+[BE Kk, (7.40)
N>T<Y N)TY 7?(\( kxv

Note that (7.40) has the exact matrix form of (7.15) except that the loads on the left hand
side of the equation are now the apparent hygrothermal loads instead of the applied
external loads.

To complete the equation set required for solution, substitute (7.36) into (7.13) and
assume there are no applied moments. This gives
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0 Ex Ky Lo a,
0p= [B] g + [D] Ky _EZ[Q]K ay (hr2< - h}i—l)AT
0 4% Kyy - Ayxy )«

(7.41)

Lo Bx
_EZ[Q]K ﬂv (hli_hli—l)AC

K=1
ﬂXY K

Similar to the approach in defining the apparent hygrothermal forces, now define the
apparent hygrothermal moments as below

P M; 3 n rax N

M7 >=£Z[6]K< a, t (h2 —h2 AT (7.42)
T 2K=1

\Mxv) (Exy ) «

(MI L[]

3 MYH >=§Z[Q]K< By ¢ (hli _hli—l)AC (7.43)
H K=1

\MXYJ Bxv ] K

Matrix equation (7.41) can now be written as

M>T< M)T 83( kx
My b+ ML =[BR &0 t+[DF k, (7.44)
M>T<Y M;‘Y 7?(\( kXY

Note that (7.44) has the same matrix form as (7.19) except that apparent hygrothermal
moments replace the applied external moments.

It is clear that the applied external loads can be combined with the apparent hygrothermal
loads as

N N N
[N]=4 Ny t+< NJ b+4 NS (7.45)
NXY N-)I;Y NXHY

and the applied external moments can be combined with the apparent hygrothermal
moments as
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My M My
[M]={ M, t+< M L+ M) (7.46)
I\/IXY M-)I;Y M)TY

The governing matrix equation to be solved for the mid-plane strains and curvatures is
again (7.21) and repeated below

[N} _([A] [BIY{e)
= (7.21)
[M]] ~\[B] [D]X {}
Here the loads and moments on the left hand side of the equation can contain externally
applied loads/moments as well as apparent hygrothermal loads/moments.

The stiffness matrix relationship (7.21) is solved for the total mid-plane strains and
laminate curvatures. These values are then substituted into (7.34) to determine the
mechanical (elastic) strains in each lamina (ply). Stresses are determined in each ply from
the constitutive equations (5.21)

Whenever the hygrothermal state of a laminate differs from its stress-free state,
hygrothermal stresses are induced in the laminae (plies) making up the laminate. An
example of such effects occurs due to fabrication of composite laminates. Thermal
stresses are induced while cooling the laminate down from the extreme fabrication
temperatures to room temperature. These thermal stresses can be thought of as residual
stresses or curing stresses. They are brought about because of differences in thermal
coefficient expansion and the stacking sequence of the laminate. An autoclave cure
cycle is shown in Figure 7.5 to indicate the temperature extremes that might be expected
during fabrication of a composite laminate.
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Figure 7.5 Typical Autoclave Thermoset Cure Cycle for Laminate
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Such residual thermal stresses should be considered as part of the design process as they
may be nontrivial.

For any general unsymmetric laminate, based on equations (7.40) and (7.44), any
hygrothermal change in temperature or moisture will induce not only extensional strains
but also warping of the laminate as exhibited by the existence of plate curvatures {k}
This is not the case for symmetric laminates for which the coupling stiffness matrix [B]
is identically zero. Furthermore, the hygrothermal moments as defined in (7.42) and

(7.43) are also zero for symmetric laminates. Therefore there is no significant
hygrothermal warpage of symmetric laminates during the fabrication process.

Stresses induced at the fiber-matrix interface, due to the fabrication process, are generally
beneficial to shear transfer between the fiber and matrix material. These internal stresses
can be calculated through micromechanics analysis and are beyond the scope of the
laminate analysis presented here.

It is noted and should be obvious that hygrothermal effects may be caused by many
factors in the design environment other than those occurring during the fabrication
process. In such cases, these hygrothermal effects can be combined with applied loads as
discussed and included in the analysis when solving (7.21) for strains and curvatures and
ultimately for stresses at the ply level.

7.4  Construction and Properties of VVarious Laminates

Derivation of the laminate stiffness matrices is based on summing the effects of the
stiffness matrices [Q ]« over each ply (lamina). When the laminate is comprised of a

number of orthotropic lamina stacked at arbitrary off-set angles @ then the laminate
stiffness matrices are generally fully populated with non-zero terms. This result often
leads to undesirable coupling between bending or twisting and extension. Therefore
laminates with arbitrary stacking sequences usually exhibit unwanted stresses and/or
deformation. It is common design practice to specify laminate stacking sequences that
result in a number of the laminate stiffness terms being zero. Thus there are special
laminate constructions that eliminate undesirable coupling effects.

A laminate orientation code is required to specify (1) the orientation of each ply with
respect to a reference axis, (2) the number of plies making up the laminate and (3) the
stacking sequence of the plies. The stacking sequence is enclosed in brackets. With this
code, each ply is denoted by an angle + 6 and separated from neighboring plies with a
slash. Plies are listed in a stacking sequence from one laminate face to the other.
Furthermore, adjacent plies of the same orientation are denoted by a numerical subscript.
Laminates which exhibit symmetry about the geometric mid-plane require that only half
of the stacking sequence be specified. For these symmetric laminates, plies are defined
from one laminate face to the mid-plane and the bracketed stacking sequence includes a
subscript S to denote that only half of the laminate is presented, i.e., with the other half
symmetric about the mid-plane.
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To illustrate this laminate orientation code, here are two simple examples of laminates.
The first laminate is defined as [+45/F30/0] where starting at the top face of the
laminate the ply stacking sequence has the order +45° -45° -30° +30° 0°. A second
laminate with symmetry about its geometric mid-plane is defined as [45/0,/90]s. This
symmetric laminate has the following ply stacking sequence order +45° 0° 0°, 90°, 90°,
0°,0°, +45°,

Note that a symmetric laminate with an odd number of plies would be coded as a
symmetric laminate except that the center ply would be over-scored. It is also useful to
define sets as repeating sequences of plies. Sets are enclosed in parenthesis and adhere to
the same rules as applied to an individual ply. A simple example of a laminate with
repeating sets might be defined as [(45/0/90),]s. Here the stacking sequence

represented has the order +45°, 0°, 90°, +45°, 0°, 90°, 90°, 0°, 45°, 90°, 0°, +45°.

When identifying hybrid laminates the laminate orientation code is somewhat modified.
Hybrid laminates have plies made up from more than one type of fiber reinforced
material. Thus the orientation code for hybrids must include with each ply angle a
subscript defining ply material.

7.4.1 Symmetric Laminates

Laminate analysis is greatly simplified if the coupling stiffness matrix [ B ] is identically
zero. Furthermore, this eliminates undesirable coupling between bending or twisting and
extension. Contribution of a ply above the geometric mid-plane of the laminate is
nullified by an identical ply, i.e., same stiffness properties and off-set angle, equally
distant below the mid-plane. Each k™ lamina contributes to particular terms in the

coupling stiffness as terms in [Q ]« multiplied by the squares of the z coordinates of the
top and bottom of each ply. Consider a ply above and a ply below the mid-plane each

with identical stiffness properties and equidistant from the mid-plane. Considering these
particular lamina, the contribution of a particular term to the coupling stiffness would
appear as below

B, = (jij (h?ks2 —h%ka1) + aij (h?k— —h%k-2)
From symmetry, hZ,, =hZ_, and hZ,, = hZ_ . Therefore

Bij = Qij (O) =0
Thus the coupling stiffness matrix [ B ] is identically zero for symmetric laminates.

7.4.2 Unidirectional, Cross-Ply and Angle-Ply Laminates

It is possible to have a laminate act as a specially orthotropic layer with respect to in-
plane forces and strains. For such laminates there is no coupling between normal stresses
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(or forces) and shear strain. This laminate characteristic requires that A; = A, =0 in the
extensional stiffness matrix. The Q,;and Q,, terms from (5.24) are rewritten below

Qi = (Qu — Qp, — 2Qg) cos’® @sin @ — (Q,, — Q,, — 2Q,;) cosPsin® &
(7.47)
Q, = (Q,; —Q,, —2Q,;)cosBsin® 8- (Q,, — Q,, — 2Q,, ) cos® fsin g

For cross-ply laminates all plies have reinforcing fibers at either 0° or 90° off-set angles
with respect to the reference XY coordinate system. Of course, unidirectional laminates
have all reinforcement oriented along the 0° reference coordinate direction. For these

special laminates it easily follows from (7.47) that Q,; and Q,, are both zero valued for
either @ =0° or @ =90°. The stiffness terms of interest are written as

A=Y Q)i (h —h)
(7.48)
Ay = Z_(aze)K (he —he2)

Since the identified Q terms are all zero valued for unidirectional and cross-plied
laminates, the A, and A,, extensional stiffness terms are also zero valued. Thus these
special laminates behave as orthotropic layers with respect to in-plane forces.

In the case of angle ply laminates, for every lamina (ply) with fiber reinforcement
oriented at + & with respect to reference coordinates there is a lamina with identical
constitutive properties and thickness oriented at an off-set angle of —@. Because the

constitutive terms Q,, and Q,, are odd functions of @ as shown in (7.47), these two
layers contribute equal positive and negative quantities to the extensional stiffness terms
A, and A, . Thus these extensional stiffness terms are zero valued for angle ply

laminates. Therefore angle ply laminates act as specially orthotropic layers with respect
to in-plane forces and strains. Note that the relative position of these lamina pairs, i.e.,
with respect to the geometric mid-plane of the laminate, is immaterial. It follows that it is
possible to construct a symmetric laminate, which exhibits an identically zero coupling
stiffness matrix[B], which at the same time is specially orthotropic with respect to in

plane forces and strains (A, = A, =0).

Simplification of the bending stiffness matrix[D], which is defined in (7.20), can also be
considered for these special laminates. The contribution of a ply to a particular term in
[D] comes from the product of the appropriate term in [6] and the difference in the
cubes of the z coordinate of the upper and lower ply interfaces. Since the contribution of
the geometric term (h,i —h,i_l) is always positive, this results in the D,,,D,,,D,, and
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D, terms all being positive valued. Because the Q,, and Q,, are odd functions of @, the
D, and D, terms in the bending stiffness matrix can be zeroed out. This result is

accomplished by having all plies in the laminate oriented at either 0° or 90° or if for every
ply oriented at + @ above the geometric mid-plane there is an identical ply at an equal
distance below the mid-plane oriented at — @ . Of course laminates of the latter type do
not exhibit mid-plane symmetry and thus the coupling stiffness matrix [B] IS nonzero in
this case. Thus the only mid-plane symmetric laminates, for which the bending stiffness
terms D,, and D, are identically zero, are those that have every ply oriented at either 0°
or 90°. It should be noted that for a laminate with alternate plies at equal positive and
negative values of@, the D, and D,s terms approach zero as the number of plies

(laminae) increase.

7.4.3 Quasiisotropic Laminates

A laminate construction widely utilized in many design applications is denoted
quasiisotropic. In this construction, the ply lay-up results in the extensional stiffness
matrix exhibiting isotropic material behavior. These laminate constructions do not,
however, result in isotropic behavior with regard to the coupling and bending stiffness
matrices, [B] and [D] respectively. This means that the elastic coefficients A; are

independent of orientation in the plane of the laminate. In this case there are only two
independent elastic coefficients similar to those in the stiffness matrix of an isotropic
material. Stiffness terms for the quasiisotropic laminate must satisfy certain relationships
in order to be consistent with the stiffness terms for an isotropic material. These
relationships are as follows

Ay =A,
Ay — A, =2Ag (7.49)
A=Ay, =0

The first of these expressions simply says that the extensional modulus is independent of
orientation. The second expression in (7.49) is analogous to the following relationship for
isotropic materials, i.e,

E VE
1-y? 1-y? =46
rearranging gives
E
——(1-v)=2G
Q- v)L+ v)( )
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and simplifying provides the well known relationship for isotropic materials

E
G=—r——
20L+v)

Here the isotropic material terms include E (Young’s modulus), v (Poisson’s ratio) and
G (shear modulus). The last expression in (7.49) represents the fact that there is no
coupling between extensional and in-plans shear strain for the quasiisotropic laminate.
The construction of a quasiisotropic laminate has the following requirements

(1) n=3,where n represents the number of plies in the laminate

(2) Individual plies must be of equal thickness and equal stiffness [Q]K values
(3) Plies must be oriented at equal angles, i.e, 8, —6,_, = z/n

Thus the angle between two adjacent plies should have the value of z/n. Examples would

include the three ply laminate [0° /+60°] and the four ply laminate [0° /4 45°/90°].
Note that for laminates constructed with sets of three or more plies each, the plies in each
set must satisfy the above stated condition on orientation. An example would be the eight

ply laminate [0° /+ 45° /90°]s.

It is important to note that the strength properties of quasiisotropic laminates are still
directionally dependent even in the plane of the laminate.

7.5  Some Examples of Laminate Analysis

Two different laminate geometries are considered along with different combinations of
applied and thermal loads. The first laminate is a two-ply [45/0] construction and the
second is an eight-ply [0/45/-45/90]s symmetric construction. Note that plies made from
unidirectional pre-impregnated tape are generally on the order of 0.125 mm (0.005 in.)
thick. The ply thicknesses specified in the following examples are larger than the typical
tape thickness, thus each ply in the examples might be thought of as a number of tape lay-
ups with the same fiber orientation. The properties used in these examples are those of a
typical E-glass epoxy. Some of these properties have been used in earlier examples, but
all of the properties are listed below.

V, =0.45 (volume fiber fraction)
p=1.8g/cm® (density)
Elastic Moduli (Natural Coordinates)

E, = 38.6GPa(5.6MPsi)
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E, =8.27GPa(1L.20MPsi)
G, = 4.14GPa(0.60MPsi)
Major Poisson’s Ratio
v, =026
Thermal Expansion Coefficients (Natural Coordinates)
a, =8.60x107°/°C
a; =22.10x107°/°C
Strength Properties

o,, =1062MPa(154.1KPsi)
o, = 610MPa(88.5KPsi)
o, = 31MPa(4.5KPsi)

o, =118MPa(17.1KPsi)
7.7, = 72MPa(10.45KPsi)

7.5.1 Two-Ply [45/0] Laminate Subjected to Applied Loads

The top lamina with thickness 3mm has a 45° orientation with respect to reference XY
coordinates while the bottom lamina of thickness 5mm has a 0° orientation. Thus the
laminate has a total thickness of 8mm. The applied loads are N, =300N/mm

and N, =150N /mm. Based on the given properties, the stiffness matrix [Q] is identical
for each ply and is determined from equations (3.20) as

39.167 21818 0
[0]=|2.1818 83915 0 |GPa
0 0 414

The [Q] and [Q ] stiffness matrices are identical for the 0° ply thus
[6]00 = [Q]
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However, [Q ] for the 45° ply is determined using equations (5.24) and becomes

17.121 8.8406 7.6939
[Q]. =|8.8406 17.121 7.6939| GPa
7.6939 7.6939 10.799

The extensional [ A], coupling [B] and bending [ D] stiffness matrices for the laminate
can now be determined using equations (7.16), (7.17) and (7.20) respectively. The z-
coordinate (h values) in these equations areh, = —4mm, h, = -1Imm andh, = +4mm. The

laminate stiffness matrices are defined below in basic Newton and meter units. Thus the
units of [ A Jare N/m, [B] are N and [ D] are Nm. The laminate stiffness matrices in this
example are given here as

[ 0.2472E+9 0.37431E+8 0.23082E +8
[A]=]0.37431E +8 0.93319E +8 0.23082E +9| N/m
|0.23082E +8 0.23082E +8 0.53096E +8

[ 0.16535E+6 —0.49941E +5 —0.57704E+5
[B]=| -0.49941E +5 -0.65468E +5 —0.57704E+5| N
|~ 0.57704E +5 —0.57704E+5 —0.49941E +5

0.12082E +4 0.23292E +3 0.16157E +3
[D]=]0.23292E +3 0.54135E+3 0.16157E+3| Nm
0.16157E+3 0.16157E+3 0.31647E+3

Substituting the applied loads and the laminate stiffness matrices into (7.21) and solving
gives the mid-plane strains and curvatures as

0.0013845
{e°}=4 0.0015448
—0.00094981

—0.26586
{k}=4 0.20351 ¢ 1/m
0.41605

Having the mid-plane strains and curvatures, the strains in reference XY coordinates are
calculated using (7.6). These strains are given as
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MECHANICAL (ELASTIC) STRAINS IN XY COORDS. FORPLY 1

EPX-UPPER EPX-LOWER EPY-UPPER EPY-LOWER EPXY-LOWER EPXY-LOWER
0.24479E-02 0.16503E-02 0.73073E-03 0.13412E-02-0.26140E-02-0.13659E-02
MECHANICAL (ELASTIC) STRAINS IN XY COORDS. FORPLY 2

EPX-UPPER EPX-LOWER EPY-UPPER EPY-LOWER EPXY-LOWER EPXY-LOWER

0.16503E-02 0.32100E-03 0.13412E-02 0.23588E-02-0.13659E-02 0.71438E-03

The stresses in reference XY coordinates are the determined from (5.21) or (7.9) for each
ply. In this example these stresses are given below.

STRESSES IN REFERENCE XY COORDS. FORPLY 1

SX-UPPER SX-LOWER SY-UPPER SY-LOWER SXY-UPPER SXY-LOWER
28.258 29.603 14.039 27.044 -3.7720 8.2672

STRESSES IN REFERENCE XY COORDS. FORPLY 2

SX-UPPER SX-LOWER SY-UPPER SY-LOWER SXY-UPPER SXY-LOWER

67.565 17.719 14.856 20.494 -5.6547 2.9575

Stresses are transformed to natural (material) coordinates for each ply using equation
(5.1). We have

STRESSES IN NATURAL LT COORDS. FORPLY 1

SL-UPPER SL-LOWER ST-UPPER ST-LOWER SLT-UPPER SLT-LOWER
17.377 36.591 24.921 20.056 -7.1091 -1.2795

STRESSES IN NATURAL LT COORDS. FORPLY 2

SL-UPPER SL-LOWER ST-UPPER ST-LOWER SLT-UPPER SLT-LOWER

67.565 17.719 14.856 20.494 -5.6547 2.9575

Note that these stresses are all given in units of MPa. The nomenclature in these results is
that SX, SY, and SXY represent the stresses in the reference XY directions and SL, ST,
and SLT the longitudinal (along the fiber reinforcement) and transverse (perpendicular to
the fiber reinforcement) directions, i.e., natural coordinates. The SXY and SLT terms
represent shear stresses in the respective coordinate systems. Remember that it is
important to be able transform the stresses to natural coordinates for the purposes of
performing failure analysis.

The strains in natural coordinates are obtained from equation (3.19) as presented below.
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STRAINS IN NATURAL LT COORDS. FORPLY 1

EL-UPPER EL-LOWER ET-UPPER ET-LOWER ELT-UPPER ELT-LOWER
0.28231E-03 0.81285E-03 0.28963E-02 0.21787E-02-0.17172E-02-0.30907E-03
STRAINS IN NATURAL LT COORDS. FORPLY 2

EL-UPPER EL-LOWER ET-UPPER ET-LOWER ELT-UPPER ELT-LOWER

0.16503E-02 0.32100E-03 0.13412E-02 0.23588E-02-0.13659E-02 0.71438E-03

The stresses in reference XY coordinates are plotted in Figure 7.6 over a cross section of
the laminate.

STRESSES IN XY COORDINATES TWO PLY LAMINATE

—SIGMAX
= = = SIGMAY
SIGMAXY

Z COORD.
w

T T ' T T T T T 1
-10 / 10 , 20 30 40 50 6 70
D . STRESS (|

Figure 7.6 Stress Variation for Two-Ply [45/0] Laminate, Reference Coords.

This graphical representation of stress variation clearly shows that the maximum stress in
reference coordinates occur at the upper interface of the lower 0° ply. Stresses in natural
(material) coordinates are plotted for this two-ply laminate in Figure 7.7 below. This plot
also shows that the maximum stress in natural coordinates occurs at the upper face of the
lower 0° ply. Applying the maximum stress criteria to these results, the most critical
stress is the transverse tensile stress at the upper surface of the 45° ply. We have

o

=0.804<1.0 (Factor of Safety = 1.24)
Oy

Thus the applied loads are not predicted to produce failure in this two-ply laminate.
Applications of the alternative failure theories predict no failure in this example as well.
The fact that the transverse tensile stress is most critical is due to the low transverse
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strength of the matrix. This is commonly the first type of damage observed in laminated
composite materials and the damage is exhibited as cracks in the matrix running parallel
to the reinforcing fibers.

STRESSES IN LT COORDINATES TWO PLY LAMINATE

— G| G MAL
= = = SIGMAT
SIGMALT

Z COORD.

-10

T ' T T T T T 1
10 1 20 30 40 50 60 70
STRESS (|

Figure 7.7 Stress Variation for Two-Ply [45/0] Laminate, Natural Coords.

7.5.2 Two-Ply [45/0] Laminate Subjected to Thermal Load Only

The laminate geometry is unchanged in this example. The intent is to calculate the
residual stresses caused by the fabrication process. It is assumed that the laminate is
processed at a fabrication temperature of 175°C and cooled to room temperature of 25°C.
Thus the change in temperature for calculation purposes is

AT =-150°C

The ply stiffness matrices[Q], [Q] and the laminate stiffness matrices [A], [B], and [D]

are unchanged from the previous example. The coefficients of thermal expansion must be
transformed from natural coordinates to reference XY coordinates for each ply using
equations (7.31). This gives

oy 15.35
a, ={15.35¢x10"° /°C
QAyy | oo |—135
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ay 8.6
a, ¢ =422.13x10°  /°C
QAyy | oo 0

for the upper 45° and lower 0° plies, respectively. The apparent thermal forces and
moments are then obtained from equations (7.38) and (7.42) and are given below.

[(NT —0.42138

INJ t=4-028575 {x10"® N/m
NI, | |-0.040689

(M] ~101.72

I My t=14+101.72 Nm/m
ML, | |+101.72

Substituting the apparent thermal loads and moments into and the laminate stiffness
matrices into (7.21) gives the mid-plane strains and curvatures as

~0.001533
{e°}=1 -0.002007
+0.0007915

+0.12164
{k}=4-0.17239; 1/m
—0.33743

The mid-plane strains and curvatures can be substituted into (7.34) to obtain the
mechanical (elastic) strains for each ply. These strains are given here as

MECHANICAL STRAINS IN REFERENCE XY COORDS. FORPLY 1

EPX-UPPER EPX-LOWER EPY-UPPER EPY-LOWER EPXY-LOWER EPXY-LOWER

0.28270E-03 0.64761E-03 0.84742E-04-0.43244E-03 0.11626E-03-0.89604E-03

MECHANICAL STRAINS IN REFERENCE XY COORDS. FORPLY 2
EPX-UPPER EPX-LOWER EPY-UPPER EPY-LOWER EPXY-LOWER EPXY-LOWER

-0.36489E-03 0.24329E-03 0.58006E-03-0.28190E-03 0.11290E-02-0.5582E-03
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The stresses in reference XY coordinates are determined from (7.36) for each ply and are
listed below.

STRESSES IN REFERENCE XY COORDS. FORPLY 1

SX-UPPER SX-LOWER SY-UPPER SY-LOWER SXY-UPPER SXY-LOWER
6.484 0.370 4.845 -8.572 4.082 -8.021

STRESSES IN REFERENCE XY COORDS. FORPLY 2

SX-UPPER SX-LOWER SY-UPPER SY-LOWER SXY-UPPER SXY-LOWER

-13.026 8.914 4.072 -1.835 4.674 -2.311

Stresses are transformed to natural (material) coordinates for each ply through (5.1).

STRESSES IN NATURAL LT COORDS. FORPLY 1
SL-UPPER SL-LOWER ST-UPPER ST-LOWER SLT-UPPER SLT-LOWER
9.747 -12.122 1.582 3.920 -0.820 -4.471
STRESSES IN NATURAL LT COORDS. FORPLY 2
SL-UPPER SL-LOWER ST-UPPER ST-LOWER SLT-UPPER SLT-LOWER

-13.026 8.914 4.072 -1.835 4.674 -2.311

The stresses are all defined in units of MPa. The strains in natural coordinates are
obtained by solving (3.19).

STRAINS IN NATURAL LT COORDS. FORPLY 1

EL-UPPER EL-LOWER ET-UPPER ET-LOWER ELT-UPPER ELT-LOWER
0.24185E-03-0.34044E-03 0.12559E-03 0.55561E-03-0.19796E-03-0.10800E-02
STRAINS IN NATURAL LT COORDS. FORPLY 2

EL-UPPER EL-LOWER ET-UPPER ET-LOWER ELT-UPPER ELT-LOWER
-0.36489E-03 0.24329E-03 0.58006E-03-0.28190E-03 0.11290E-02-0.5582E-03

For this case of thermal loads only, the residual stresses in reference coordinates are
plotted below in Figure 7.8 over a cross section of the laminate. In this graphical
representation it is clear that the largest stress is compressive and acts at the interface
between plies. Note that the variation ofo, , o, , and 7, are self-equilibrating which is
consistent with the fact that there are no external applied forces/moments in this example.
Thus the net area in each of these stress plots, in reference coordinates, and the moment
of the area about any point is zero.
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STRESSES IN XY COORDINATES TWO PLY LAMINATE
(TEMPERATURE CHANGE ONLY)
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Figure 7.8 Residual Stress Variation for Two-Ply [45/0]
Laminate, Reference Coordinates

Residual stresses in natural coordinates are plotted below in Figure 7.9. The largest stress
in natural coordinates is compressive and occurs at the upper interface of the 0° ply.
Applying the maximum stress criteria in this case, the most critical stress is the
transverse tensile stress at the upper interface of the 0° ply. This criteria is written as

i

=0.131<1 (Factor of Safety = 7.63)
Oy

Therefore the residual thermal stresses produced in this example are quite low and not
predicted to produce failure. Alternative failure theories also predict that these stresses
are quite safe.
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STRESSES IN LT COORDINATES TWO PLY LAMINATE
(TEMPERATURE CHANGE ONLY)

Z COORD.
v
3
‘ ¥

— | GMAL
= = = SIGMAT
SIGMALT

\ T T
\ 5 10
. STRESS (MPA)

-15

Figure 7.9 Residual Stress Variation for Two-Ply [45/0]
Laminate, Natural Coordinates

7.5.3 Two-Ply [45/0] Laminate Subjected to Applied and Thermal Loads

In this example the applied and apparent thermal loads of the previous two example
problems are combined. Thus in this case the governing equations (7.21) are solved for
the mid-plane strains and curvatures where the loads {N} and moments {M} contain

both the applied and the apparent thermal loads/moments as defined in (7.45) and (7.46).
Mid-plane strains and curvatures are substituted into (7.34) to obtain the mechanical
(elastic) strains for each ply. Stresses in reference XY coordinates come from (7.36) and
are transformed to natural coordinates for each ply using the transformation (5.1). Strains
in natural coordinates come from (3.19). The stresses in reference XY coordinates are
plotted below in Figure 7.10 through a cross section of the laminate. Stresses in natural
coordinates are plotted in Figure 7.11. Applying the maximum stress criteria, the most
critical stress is the transverse tensile stress at the upper surface of the 45° ply. We have

i

=0.855<1 (Factor of Safety = 1.17)
Oy

Thus the combined loads are not predicted to produce failure.
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STRESSES IN XY COORDINATES TWO PLY LAMINATE
(COMBINED LOADS/TEMP. CHANGE)
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Figure 7.10 Stress Variation for [45/0] Laminate, Ref. Coords., Combined Loads

STRESSES IN LT COORDINATES TWO PLY LAMINATE
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Figure 7.11 Stress Variation for [45/0] Laminate, Natural Coords., Combined Loads

7.5.4 Quasiisotropic [0,45,-45,90]s Laminate Subjected to Applied Loads

This symmetric laminate is comprised of eight plies where each ply is 0.25 mm thick.
Thus the laminate has a thickness of 3 mm. The applied loads in this case are
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N, =100N/mm and N, =50N/mm. Based on the given E-glass epoxy properties, the
stiffness matrix [Q] is identical for each ply and has been previously defined in section

7.5.1. The [Q ] and [Q ] matrices are identical for the 0° ply. The [Q ] matrix for the 45°

ply has also been previously defined. The [Q ] stiffness matrices for the -45° and 90° off-
axis plies are defined using equation (5.24) and are written below.

17121 88406 —7.6939
[0]. =| 88406 17121 -7.6939| GPa
76939 —7.6939 10.799

83915 2.1818 O
0], =| 21818 39.167 0 | GPa
0 0 414

The extensional [A], coupling [B] and bending [D] laminate stiffness matrices are
defined using equations (7.16), (7.17) and (7.20) respectively. The z-coordinate (h
values) locating the upper and lower interfaces of each ply are given as

ho=-1.0mm, h;=-0.75mm, h,=--0.50mm, h3=-0.25mm, h;=0.00mm
hs=0.25mm, hg=0.50mm, h;=0.75mm, hg=1.0mm

The laminate stiffness matrices are defined in basic Newton and meter units. These
matrices in this example are as follows

0.40900E +8 0.11022E +8 0.0
[A]=]0.11022E +8 0.40900E +8 0.0 N/m
0.0 0.0 0.14939E +8

19.82  3.258 0.96174
[D]=| 3.258 82791 0.96174| Nm
0.96174 0.96174 4.5634

The coupling stiffness matrix [B] is numerically zero-valued because the laminate
stacking sequence is symmetric. Since this is a quasiisotropic laminate, terms in the
extensional stiffness matrix [ A] satisfy the relationships given in (7.49) for isotropic
material behavior. Substituting the applied loads along with the laminate stiffness
matrices into (7.21) and solving gives the mid-plane strains as

0.0022812
{e°}=10.0006077
0.0000000
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The plate curvatures {k } are numerically zero-valued in this case due to the fact that
there is no coupling between in-plane loads and bending. Following he same procedure as
in the previous examples, the mid-plane strains are substituted into (7.6) to solve for
strains in reference coordinates. Stresses in reference coordinates are determined from
(5.21) and these stresses are transformed to natural coordinates for each ply using
equation (5.1) or (7.9). These stresses in natural coordinates are written below for the
four plies above the geometric mid-plane of the laminate.

STRESSES IN NATURAL LT COORDS. FORPLY 1

SL-UPPER SL-LOWER ST-UPPER ST-LOWER SLT-UPPER SLT-LOWER
90.675 90.675 10.077 10.077 0.000 0.000

STRESSES IN NATURAL LT COORDS. FORPLY 2

SL-UPPER SL-LOWER ST-UPPER ST-LOWER SLT-UPPER SLT-LOWER
59.727 59.727 15.273 15.273 -6.928 -6.928

STRESSES IN NATURAL LT COORDS. FORPLY 3

SL-UPPER SL-LOWER ST-UPPER ST-LOWER SLT-UPPER SLT-LOWER

59.727 59.727 15.273 15.273 6.928 6.928

STRESSES IN NATURAL LT COORDS. FORPLY 4
SL-UPPER SL-LOWER ST-UPPER ST-LOWER SLT-UPPER SLT-LOWER

28.780 28.780 20.469 20.469 0.000 0.000

Due to symmetry and the fact that only in-plane loads are applied to the laminate, the
stresses in the four plies below the geometric mid-plane of the laminate are the mirror
image of the stresses given above. Stresses in reference XY coordinates are plotted in
Figure 7.12 over a cross section of the laminate. Stresses in natural (material) coordinates
are similarly plotted in Figure 7.13. The largest stress is the longitudinal stress in the 0°
ply. However, the most critical stress is the transverse tensile stress in the 90° ply. We
have

i

=0.660<1 (Factor of safety = 1.51)
Oy
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STRESSES IN XY COORDINATES QUASI-ISOTROPIC LAMINATE
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Figure 7.12 Stress Variation for [0/45/-45/90]s Laminate, Ref. Coords.

STRESSES IN LT COORDINATES QUASI-ISOTROPIC LAMINATE
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Figure 7.13 Stress Variation for [0/45/-45/90]s Laminate, Natural Coords.

It is apparent that the applied loads are not predicted to produce failure in this
quasiisotropic laminate. As in the previous examples, the low transverse tensile strength
is the reason that transverse tensile stress is most critical. The first form of damage in this
example would be observed as matrix cracking in the 90° plies.
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80 FLOW CHART FOR LAMCALCS COMPUTER PROGRAM

BASIC PROBLEM DEFINITION

Input Problem Title, IUNIT (Type of Engineering Units), MTYPES (Number of
Material Types), AT (Change in Temperature), AH (Change in Relative Moisture
Content), Ifailure (=0, No Failure Analysis, =1, Perform Failure Analysis)

Forl1=1, MTYPES

Input Material Properties E, ,E;,G,;,7,+

If AT #0 Input o,

If AH =0 Input B, 5;

If Ifailure = 1 Input &, ,,0,,07,, 07, Ti1u Fuo

Calculate Allowable Strains Based on Elastic Behavior to Failure

ELur€Lur €ty Erur YTy

A 4

Input NLAYERS = # of Laminae (Plies) in Laminate

For 1 =1, NLAYERS

Input Ply Thickness, @, and MATPLY (Ply Material Property)

Input Applied Forces and Moments per Unit Length

NX’NY’NXY'MX7MY’MXY

l

Continue A
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|

For1=1, MTYPES

Calculate Stiffness Q; and Compliance S; Coefficients in
Material (Natural) Coordinates.

For 1 =1, NLAYERS

Calculate Stiffness Coefficients QJ in Reference Coordinates.

A 4
If AT # 0 Calculate Thermal Coeffs. Of Expansion
a,,a,,a,, inRefefence xy coordinates for each ply.
Calculate Apparent Thermal Forces and Moments
Ny, Ny, N, , M}, M/, M}, for each ply.

A 4
If AH # 0 Calculate Moisture Coeffs. Of Expansion
By, By, By, In Reference xy coordinates for each ply.
Calculate Apparent Hygroscopic Forces and Moments
N NG NE M MG MY, for each ply.

A 4
Calculate the Extensional Stiffness Matrix [A], Coupling
Stiffness Matrix [B], and Bending Stiffness Matrix [D] for
the laminate Geometry.

Continue B
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B

l

Solve for the Laminate Mid-Plane Strains and Curvatures from

ol (] e
Here the Loads and Moments on the Left-Hand Side of the

Equation can contain Externally Applied Loads/Moments as well as
Apparent Hygrothermal Loads/Moments.

For I = NLAYERS

Calculate Strains &,,&,,7y, and Stresses o ,0y Ty, N
Reference XY Coordinates at Ply Interfaces.

For1 1, NLAYERS

Calculate Stresses o ,0,7,+ and Strains ¢_, &,y In
Natural (Material) Coordinates at Ply Interfaces.

\ 4

If Ifailure = 1 Apply Failure (Strength) Criteria at Each Ply
Interface Through the Thickness of the Laminate.
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9.0 DESCRIPTION OF USER INPUT TO LAMCALCS PROGRAM

The user responds to screen prompts to define all input for any particular problem. Upon
opening the LAMCALCS program, the following header is listed.

LAMCALCS CALCULATES LAMINATE STRESSES/STRAINS
BY CLASSICAL LAMINATION THEORY

GENERALIZED AND SEPARABLE FAILURE THEORIES APPLIED

*** Results Obtained By User Are In No Way Warranted By Developer ***

User Is Expected To Use Consistent Units And To Know Limitations Of Both
Classical Lamination Theory and Of The Applied Failure Theories.

The input prompts that follow are numbered below.

Input problem title
Input UNITS, UNITS=1 for Newton Meter Sec., UNITS=2 for Lb. Inch Sec.
Input number of material types
Input change in temperature DT
Input change in relative moisture content DH
Input IFAILURE, value of 1 for failure analysis
Input EL, ET, GLT and NULT for material type
Input Longitudinal Elastic Modulus EL for material type i
Input Transverse Elastic Modulus ET for material type i
10. Input In-Plane Elastic Shear Modulus GLT for material type i
11. Input Minor Poissons Ratio NULT for material type i
12. If DT Nonzero, input thermal coefficients of expansion ALPHAL, ALPHAT
for material type i
13. If DH Nonzero, input coefficients of relative moisture expansion for material
type i
14. If IFAILURE=1, input strength properties for material type i as below
Longitudinal Tensile Strength
Longitudinal Compressive Strength
Transverse Tensile Strength
Transverse Compressive Strength
In-Plane Shear Strength
Tsai-Wu Normalized Interactive Strength Term
Note: When this term is input as zero, Tsai-Wu Criteria ignored
15. Note: Steps 7 through 14 would be repeated for each material type
16. Input Total Number of (Laminae) Plies in laminate

©CoNoA~wWNE
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17. Input value for ISYMM, ISYMM = 1 for symmetric laminate with even
number of plies and when ISYMM = 1 input ply definition from surface to
mid-plane to save input

18. Input Thickness, Theta and Material Type for each ply

19. Input applied forces NX, NY, NXY per unit width of laminate

20. Input applied moments MX, MY, MXY per unit width of laminate

21, Input LONGOUT, when LONGOUT = 1 intermediate data is output

22. Press any key to close input session

23.  After closing input session, user is prompted as follows

EXIT WINDOWS?
User should respond with NO in order to save plot of stress distribution
shown in child window for later pasting into OUTPUT file

10.0 EXAMPLE OF PROMPTED INPUT TO LAMCALCS PROGRAM

An Example of screen prompted input to the LAMCALCS Program is presented below
for the example problem given in Section 7.5.3. Note that the last user input of ““NO”” is
simply to save the plot of stress distribution before closing out the input stream. The
saved stress plot can later be pasted into the OUTPUT file if so desired.

LAMCALC CALCULATES LAMINATE STRESSES/STRAINS
BY CLASSICAL LAMINATION THEORY

GENERALIZED AND SEPARABLE FAILURE THEORIES APPLIED
*** Results Obtained by User are in no way WARRANTED BY DEVELOPER ***

User is Expected To use Consistent Units and to Know Limitations of Both
Classical Lamination Theory and of the Applied Failure Theories.

INPUT PROBLEM TITLE
TWO PLY GLASS EPOXY LAMINATE , APLIED LOADS AND TEMP. CHANGE

INPUT UNITS, UNITS=1 FOR N m s, UNITS=2 FOR Ibin s
1
UNITS ARE INPUT AS NEWTON-METERS-SECONDS

INPUT NUMBER OF MATERIAL TYPES
1
NUMBER OF MATERIAL TYPES = 1

INPUT CHANGE IN TEMPERATURE DT
-150
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CHANGE IN TEMPERATURE = -150.000

INPUT CHANGE IN RELATIVE MOISTURE CONTENT DH
0

CHANGE IN RELATIVE MOISTURE CONTENT = 0.000

INPUT IFAILURE, VALUE OF 1 FOR FAILURE ANALYSIS
1FAILURE ANALYSIS WILL BE PERFORMED

INPUT EL,ET,GLT,AND NULT FOR MATERIAL TYPE 1

INPUT LONGITUDINAL ELASTIC MODULUS EL
.386E11

INPUT TRANSVERSE ELASTIC MODULUS ET
.827E10

INPUT INPLANE ELASTIC SHEAR MODULUS GLT
414E10

INPUT MINOR POISSONS RATIO NULT
.26

INPUT Thermal Coeffs. of Expansion ALPHAL, ALPHAT for MATERIAL TYPE 1
.86E-5,.221E-4

INPUT STRENGTH PROPERTIES FOR MATERIAL TYPE 1

INPUT LONGITUDINAL TENSILE STRENGTH SIGMALU
.1062E10

INPUT LONGITUDINAL COMPRESSIVE STRENGTH SIGMALU-P
.61E9

INPUT TRANSVERSE TENSILE STRENGTH SIGMATU
31E8

INPUT TRANSVERSE COMPRESSIVE STRENGTH SIGMATU-P
118E9

INPUT IN-PLANE SHEAR STRENGTH TAULTU
.T2E8

INPUT TSAI-WU NORMALIZED INTERACTIVE STRENGTH TERM
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-5
TSAI-WU FAILURE CRITERIA IGNORED WHEN THIS TERM =0

INPUT TOTAL NUMBER OF (LAMINAE) PLIES IN LAMINATE
2

# OF PLIES IN LAMINATE = 2

FOR SYMMETRIC LAMINATE INPUT VALUE OF 1 FOR ISYMM
NOTE: SYMMETRIC LAMINATE MUST HAVE EVEN # OF PLIES

INPUT VALUE FOR ISYMM
0

SYMMETRY VALUE ISYMM = 0

LAMINATE IS NOT SYMMETRIC ABOUT MIDPLANE OF LAMINATE

For each ply - Input, PLY THICKNESS, THETA (Degrees), And MATERIAL Type
For Symmetric Laminates, Input ONLY PLY INFO From Surface To MID-PLANE

INPUT THICKNESS, THETA AND MATERIAL FORPLY # 1
.003,45,1

INPUT THICKNESS, THETA AND MATERIAL FORPLY # 2
.005,0,1

INPUT APPLIED FORCES NX,NY,NXY PER UNIT WIDTH
.3E6,.15E6,0

INPUT APPLIED MOMENTS MX,MY,MXY PER UNIT WIDTH
0,0,0

TOTAL LAMINATE THICKNESS = 0.008

*** LONG-FORM OUTPUT ADDS INTERMEDIATE DATA TO OUTPUT ***
INTERMEDIATE DATA TYPES LISTED BELOW

STIFFNESS AND COMPLIANCE COEFFS. (MATERIAL COORDS.)
QBAR STIFFNESS COEFFS. (REFERENCE COORDS.)

H VALUES LOCATING PLY (LAMINA) INTERFACES
ALPHAXY-THERMAL COEFFS. OF EXPANSION -REF. COORDS.
APPARENT THERMAL FORCES AND MOMENTS
BETAAXY-HYGROSCOPIC COEFFS. OF EXPANSION -REF. COORDS.
APPARENT HYGROSCOPIC FORCES AND MOMENTS
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SYSTEM EXTENSIONAL STIFFNESS MATRIX 3X3 PARTITION [A]
SYSTEM COUPLING STIFFNESS MATRIX 3X3 PARTITION [B]
SYSTEM BENDING STIFFNESS MATRIX 3X3 PARTITION [D]
INVERSE OF COMPLETE 6X6 SYSTEM STIFFNESS MATRIX
MID-PLANE STRAINS AND CURVATURES

INPUT LONGOUT, LONG-FORM OUTPUT WHEN LONGOUT=1
0

PROGRAM TERMINATED WITH EXIT CODE 0

EXIT WINDOWS?
NO

11.0 EXAMPLE OF OUTPUT FROM LAMCALCS COMPUTER PROGRAM
When running LAMCALCS from an icon on the Desktop, the OUTPUT file is routed to
the Desktop. The file can then be renamed and saved in an appropriate folder. Note that
the OUTPUT file can be opened with Notepad, WordPad or Word on a PC. It is
recommended that the OUTPUT file be opened with Word and saved in Word format.

An Example of output from the LAMCALCS Program is presented below for the
example problem given in Section 7.5.3.

LAMCALC CALCULATES LAMINATE STRESSES/STRAINS
BY CLASSICAL LAMINATION THEORY

GENERALIZED AND SEPARABLE FAILURE THEORIES APPLIED

*** Results Obtained BY User Are In No Way Warranted BY Developer ***

USER IS EXPECTED TO USE CONSISTENT UNITS AND TO KNOW
LIMITATIONS OF BOTH CLASSICAL LAMINATION THEORY AND OF THE
APPLIED FAILURE THEORIES.
TWO PLY GLASS EPOXY LOADS AND TEMP. CHANGE COMBINED
UNITS ARE INPUT AS NEWTON-METERS-SECONDS
NUMBER OF MATERIAL TYPES = 1

CHANGE IN TEMPERATURE = -150.000
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CHANGE IN RELATIVE MOISTURE CONTENT = 0.000

FAILURE ANALYSIS WILL BE PERFORMED

STIFFNESS PROPERTIES FOR MATERIAL TYPE 1

EL= 0.38600E+11 ET= 0.82700E+10 GLT= 0.41400E+10
NULT= 0.26000E+00

THERMAL COEFFS. OF EXPANSION FOR MATERIAL TYPE 1

ALPHAL = 0.86000E-05 ALPHAT = 0.22100E-04

LONGITUDINAL TENSILE STRENGTH 0.10620E+10
LONGITUDINAL COMP. STRENGTH = 0.61000E+09

TRANSVERSE TENSILE STRENGTH = 0.31000E+08
TRANSVERSE COMP. STRENGTH = 0.11800E+09

SHEAR STRENGTH = 0.72000E+08
TSAI-WU NORMALIZED INTERACTIVE STRENGTH TERM =-0.50000E+00

TSAI-WU FAILURE CRITERIA IGNORED WHEN THIS TERM = O

# OF PLIES IN LAMINATE = 2
SYMMETRY VALUE ISYMM = 0]

PLY BY PLY DEFINITION BELOW

PLY # = 1 PLY THICKNESS = 0.30000E-02 THETA = 45.000
PLY MATERIAL = 1
PLY # = 2 PLY THICKNESS = 0.50000E-02 THETA = 0.000

PLY MATERIAL = 1
APPLIED FORCES AND MOMENTS (UNITS/WIDTH) BELOW

NX= 0.30000E+06 NY= 0.15000E+06 NXY= 0.00000E+00
MX= 0.00000E+00 MY= 0.00000E+00 MXY= 0.0000OE+00
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TOTAL LAMINATE THICKNESS = 0.008
*** LONG-FORM OUTPUT ADDS INTERMEDIATE DATA TO OUTPUT ***
INTERMEDIATE DATA TYPES LISTED BELOW

STIFFNESS AND COMPLIANCE COEFFS. (MATERIAL COORDS.)
QBAR STIFFNESS COEFFS. (REFERENCE COORDS.)

H VALUES LOCATING PLY (LAMINA) INTERFACES
ALPHAXY-THERMAL COEFFS. OF EXPANSION -REF. COORDS.
APPARENT THERMAL FORCES AND MOMENTS
BETAAXY-HYGROSCOPIC COEFFS. OF EXPANSION -REF. COORDS.
APPARENT HYGROSCOPIC FORCES AND MOMENTS

SYSTEM EXTENSIONAL STIFFNESS MATRIX 3X3 PARTITION [A]
SYSTEM COUPLING STIFFNESS MATRIX 3X3 PARTITION [B]
SYSTEM BENDING STIFFNESS MATRIX 3X3 PARTITION [D]
INVERSE OF COMPLETE 6X6 SYSTEM STIFFNESS MATRIX
MID-PLANE STRAINS AND CURVATURES

LONGOUT = 0

MECHANICAL (ELASTIC) STRAINS IN XY COORDS. FOR PLY 1

EPX-UPPER EPX-LOWER EPY-UPPER EPY-LOWER EPXY-LOWER EPXY-LOWER

0.27306E-02 0.22979E-02 0.81547E-03 0.90881E-03-0.24978E-02-0.22619E-02
MECHANICAL (ELASTIC) STRAINS IN XY COORDS. FOR PLY 2

EPX-UPPER EPX-LOWER EPY-UPPER EPY-LOWER EPXY-LOWER EPXY-LOWER

0.12854E-02 0.56429E-03 0.19213E-02 0.20769E-02-0.23691E-03 0.15617E-03

STRESSES(MPa) IN REFERENCE XY COORDS. FOR PLY 1

SX-UPPER SX-LOWER SY-UPPER SY-LOWER SXY-UPPER SXY-LOWER

34.741 29.973 18.884 18.471 0.311 0.247

STRESSES(MPa) IN REFERENCE XY COORDS. FOR PLY 2

SX-UPPER SX-LOWER SY-UPPER SY-LOWER SXY-UPPER SXY-LOWER

54_.538 26.633 18.927 18.659 -0.981 0.647
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STRESSES(MPa) IN NATURAL LT COORDS. FOR PLY 1

SL-UPPER SL-LOWER ST-UPPER ST-LOWER SLT-UPPER SLT-LOWER

27.123 24.469 26.502 23.976 -7.929 -5.751

STRESSES(MPa) IN NATURAL LT COORDS. FOR PLY 2
SL-UPPER SL-LOWER ST-UPPER ST-LOWER  SLT-UPPER  SLT-LOWER

54 .538 26.633 18.927 18.659 -0.981 0.647

STRAINS IN NATURAL LT COORDS. FOR PLY 1

EL-UPPER EL-LOWER ET-UPPER ET-LOWER ELT-UPPER ELT-LOWER

0.52416E-03 0.47241E-03 0.30219E-02 0.27343E-02-0.19151E-02-0.13891E-02

STRAINS IN NATURAL LT COORDS. FOR PLY 2

EL-UPPER EL-LOWER ET-UPPER ET-LOWER ELT-UPPER ELT-LOWER

0.12854E-02 0.56429E-03 0.19213E-02 0.20769E-02-0.23691E-03 0.15617E-03
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MAXIMUM STRESS CRITERIA VALUES OF FORM
SIGMA/SIGMA(ALLOWABLE)

MAX. STRESS CRITERIA FOR PLY 1

SLC-UPPER SLC-LOWER STC-UPPER STC-LOWER SLTC-UPPER SLTC-LOWER

0.25540E-01 0.23040E-01 0.85491E+00 0.77341E+00 0.11012E+00 0.79874E-01

MAX. STRESS CRITERIA FOR PLY 2

SLC-UPPER  SLC-LOWER  STC-UPPER  STC-LOWER  SLTC-UPPER SLTC-LOWER

0.51354E-01 0.25078E-01 0.61056E+00 0.60192E+00 0.13622E-01 0.89799E-02

FACTOR OF SAFETY BY MAX. STRESS CRITERIA 1.17

KErIAAIAAXAAIAAAXAAIAXAAIAAIAXAAIAAIAXAAIAAAXAAAXAAXAAAAAXAAAXXAAXAAX

MAXIMUM STRAIN CRITERIA VALUES OF FORM
EPSILON/EPSILON(ALLOWABLE)

MAX. STRAIN CRITERIA FOR PLY 1

ELC-UPPER ELC-LOWER ETC-UPPER STC-LOWER ELTC-UPPER ELTC-LOWER

0.19051E-01 0.17171E-01 0.80617E+00 0.72945E+00 0.11012E+00 0.79874E-01

MAX. STRAIN CRITERIA FOR PLY 2

ELC-UPPER ELC-LOWER ETC-UPPER STC-LOWER ELTC-UPPER ELTC-LOWER

0.46721E-01 0.20510E-01 0.51256E+00 0.55406E+00 0.13622E-01 0.89799E-02

FACTOR OF SAFETY BY MAX. STRAIN CRITERIA 1.24

AEEIEEIEAALAITAAIAAATAAITLAAALAIAAAALAITAAXAAATAAAAATALAATAAXAAXXAXKX
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HASHIN CRITERIA VALUES OF FORM (SIGMA/SIGMA-ALLOWABLE)**2

HASHIN STRENGTH CRITERIA FOR PLY 1
FIBER-UPPER FIBER-LOWER MATRIX-UPPER MATRIX-LOWER

0.12779E-01 0.69107E-02 0.74299E+00 0.60455E+00

HASHIN STRENGTH CRITERIA FOR PLY 2
FIBER-UPPER FIBER-LOWER MATRIX-UPPER MATRIX-LOWER

0.28228E-02 0.70955E-03 0.37297E+00 0.36239E+00

FACTOR OF SAFETY BY HASHIN QUADRATIC CRITERIA 1.16

KEIAKIAIAAAXAAITXAAXAAAXAAXAAAITXAAIAAITAAIAAAXAAATAAXAAITXAAXAATAAXAAXAAAXXX

TSAI-HILL CRITERIA VALUES OF FORM (SIGMA/SIGMA-
ALLOWABLE)**2
TSAI-HILL STRENGTH CRITERIA FOR PLY 1
TSAI-HILL UPPER  TSAI-HILL LOWER

0.74301E+00 0.60456E+00

TSAI-HILL STRENGTH CRITERIA FOR PLY 2
TSAI-HILL UPPER  TSAI-HILL LOWER

0.37469E+00 0.36257E+00

FACTOR OF SAFETY BY TSAI HILL CRITERIA 1.16

EA R R R R R R R S e R R R R R A R R R R R R R A AR AR I e R R R e o o
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TSAI-WU CRITERIA VALUES OF FORM (SIGMA/SIGMA-ALLOWABLE)**2

TSAI-WU STRENGTH CRITERIA FOR PLY 1
TSAI-WU UPPER TSAI-WU LOWER

0.80189E+00 0.70556E+00

TSAI-WU STRENGTH CRITERIA FOR PLY 2
TSAI-WU UPPER TSAI-WU LOWER

0.49361E+00 0.51135E+00

FACTOR OF SAFETY BY TSAI WU CRITERIA 1.12

KErIAAIAAAXAAIAAAXAAIAAAIAAAAAIAAAXAAAAAIAAAAAAAAXAAXAAXX
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STRESS (ABSOLUTE VALUES) AND FAILURE ANALYSIS SUMMARY

SL - MAX. LONGITUDINAL STRESS (MPa) = 54 .54
ST - MAX. TRANSVERSE STRESS (MPa) = 26.50
SLT -MAX. IN-PLANE SHEAR STRESS (MPa) = 7.93
FACTOR OF SAFETY BY MAX. STRESS CRITERIA = 1.17
FACTOR OF SAFETY BY MAX. STRAIN CRITERIA = 1.24
FACTOR OF SAFETY BY HASHIN CRITERIA = 1.16
FACTOR OF SAFETY BY TSAI-HILL CRITERIA = 1.16
FACTOR OF SAFETY BY TSAI-WU CRITERIA = 1.12
>
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120 SUMMARY

A well established computational method, based on classical lamination theory, for
calculating stresses/strains in fiber-reinforced laminated composite structures has been
presented. Furthermore, various failure theories have been defined, each of which utilizes
the calculated stresses/strains on a ply-by-ply basis in the laminate. Externally applied
loads and hygrothermal (thermal and moisture) effects have been included in the
computational procedure. Stress and failure predictions are an integral part of the design
process when specifying laminate geometries. All of the computed results presented
herein are based on classical lamination theory and have been obtained using the
LAMCALCS computer program.

It has been noted that stress predictions from classical lamination theory are quite
accurate in locations away from boundaries, e.g., free edges, edge of a hole or cutout,
etc., of the laminate. Thus at distances equal to the laminate plate thickness or greater the
computational method presented herein is accurate and useful in the preliminary design
of laminated composite structures. The basis for this limitation is that lamination theory
assumes a generalized state of plane stress which is reasonably accurate away from
boundaries. Along boundaries, the state of stress becomes three-dimensional with the
possibility that interlaminar shear and/or interlaminar normal stresses can become
significant. Deviation of classical lamination theory along laminate boundaries is often
referred to as a boundary-layer phenomenon. Computation of stresses along laminate
boundaries is generally accomplished through the application of finite difference, finite
element or boundary element computer programs and is beyond the scope of the
methodology presented in this course.
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