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1.0 INTRODUCTION 

 
The arch bridge, constructed in various forms for over three 

thousand years, supports vertical loads through a curved surface 

to the foundations (abutments). This support is primarily axial, 

rather than flexural, in nature. Horizontal beams, on the other 

hand, support vertical loads by flexure. 

  

Consider, for example, a span of forty (40) feet, with a uniform 

vertical load of one (1) kip/ft. Contrast a horizontal beam with 

a three-hinged parabolic arch of four (4) foot rise. 

 

Load    Horizontal Beam Parabolic Arch 

--------   --------------- ------- 

Flexure    200 kip-ft  0 

Axial   0    50 kip (crown) 

Base horizontal 0    50 kip 

 

This shows both the advantage of the arch in flexure, but also 

its disadvantage in base horizontal force (thrust). 

Assuming the allowable flexural stress in a steel beam is 20 ksi 

and the allowable compressive stress is 5 ksi, then the 

beam requires a W14x82 while the arch a W14x24. 

This advantage in flexure is strong for a constant uniform load, 

which holds in bridges because of the very large dead load of 

the roadway (or trainway) deck. In buildings, however, dead load 

is a relatively small load compared with others. The arch still 

has advantage in terms of less moment, 

but not as striking as that above. 

 

The types of parabolic arches considered here are: 

● 3 Hinged Arch –  2 hinges at abutments, 1 at crown 

● 2 Hinged Arch -  2 hinges at abutments 

● Fixed Arch    -  all connections fixed 

● Tied Arch     -  opposite abutments structurally tied 

● Deck Arch     -  roadway above arch 

● Through Arch  -  portion, or all, of arch above roadway 

  

Nomenclature on the following page is taken from Reference 1. 
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2.0 THREE-HINGED PARABOLIC ARCHES 
 

Our study here covers symmetric three-hinged arches with 

abutments at the same level. These arches have hinges at both 

springing and at the crown, and are statically determinant.  

 

Two load cases are shown on the next page, namely an isolated 

vertical point load on the right half of the arc, and a uniform 

vertical load. 

 

The diagram of the first load case shows two free body diagrams. 

The one on the left represents a segment of the arch from the 

crown to the point of application of the vertical load. The one 

on the right shows a free body segment from the crown to the 

right of the vertical load. 

 

In all cases, P represents axial force, Q transverse force, and 

M moment with directions as shown. Θ represent the angle from 

the horizontal (+x axis) to P, as well as the angle from the 

vertical (+y axis) to Q. Note that this angle changes as x 

changes, resulting in more complicated calculations compared to 

a straight beam. 

 

In all the following developments, 

x0 = span/2 

y0 = rise (positive downward) 

M = positive clockwise 

 

For the first case, consider the support reactions, 

Sum of vertical forces = -V0-V1+F1 = 0 

Sum of moments about right support = +V0*(2*x0)-F1*(x0-x1) = 0 

Thus V0 = F1*(x0-x1)/2*x0 

and V1 = F1*(x0+x1)/2*x0 

 

Now take the moments about the right half of the arch to give: 

H0*y0+V0*x0-F1*(x0-x1) = 0 

This solves as H0      = F1*(x0-x1)/2*y0 

Since there are not applied horizontal forces, H1 = H0, 

and all the support reactions are known.   
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Knowing the support reactions, the equations of statics may be 

used to find the forces N axial and Q shear) and moment M on  

any point on the arch 

 

Examining the free body diagram to the left of the vertical load 

we have: 

+H0 + P*cosθ – Q*sinθ = 0 

-V0 + P*sinθ + Q*cosθ = 0 

+M + V0*x + H0*y      = 0 

where θ = tan^(-1)(x/2*a) and a = x0^2/4*y0 

 

From the free body diagram to the right of the vertical load we 

have: 

+H0 + P*cosθ – Q*sinθ = 0 

-V0 + P*sinθ + Q*cosθ + F1   = 0 

+M + V0*x + H0*y - F1*(x-x1) = 0 

 

In each case we have three equations in three unknowns. 

They are solved as: 

To the left of F1, 

P = -H0*cosθ + V0*sinθ 

Q = +H0*sinθ + V0*cosθ 

M = -H0*y – V0*x 

To the right of F1, 

P = -H0*cosθ +(V0-F1)*sinθ 

Q = +H0*sinθ +(V0-F1)*cosθ 

M = +F1*(x-x1)-H0*y-V0*x 

The equations for a point load to the left of the crown may be 

solved in a similar manner. 

 

Now consider a uniform load as shown as the lower arch on the 

previous diagram sheet. 

For the total arch, by uniform load and symmetry, 

V0 = V1 = w0*L/2 = w0*x0 

From a free body diagram of the left half, 

Shear at center = w0*L/2 – w0*L/2 = 0 

Thus V in at the crown = 0. 

 

In the right half, take moments about the crown, 

-H0*y0 + V0*x0 - w0*x0^2/2 = 0 

Thus H0 = w0*x0^2/2*y0 
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For the right segment shown, 

(1) H0 + P*cosθ –Q*sinθ = 0   

(2) w0*x + P*sinθ +Q*cosθ = 0 

(3) w0*x^2/2 + H0*y + M = 0 

It can be shown that y = y)*x^2/x0 so that H0*y = w0*x^2/x0. 

Thus M = 0 at each point. 

 

Solving (1) and (2) gives: 

P = -H0*cosθ – w0*x*sinθ 

Q = +H0*sinθ – w0*x*cosθ 

For the arch with span = 40’ and rise = 4’, 

H0   = 50 kip 

P base = 53.182 kip 

Qcrown = Q hase = 0  

 

The most famous three-hinged bridge is the one crossing the 

Salinga river ravine (Salingatobel in German) in Schiers,  

Switzerland. It was designed and constructed by Robert  

Maillart. He won the contract over eighteen other entries,  

both for a combination of price and appearance. The arch has a  

rise of 42.6 feet and a span of 295 feet. While not as long as  

some other arch bridges, the span may be visualized as the  

length of a football field. It rises at a 3% gradient, which  

is not considered in the following analysis. The bridge width 

of 12.46 feet serves pedestrian, auto, and truck traffic. 

 

The wooden framework was constructed in 1929 by six men, as 

described in Reference 2. One of the scaffolders fell 115 feet  

and survived! This set back the form work which was not  

completed until late October, too late for concrete  

construction. The concrete construction was then accomplished  

in three months in 1930. 

 

Robert Maillart developed the three-hinged, hollow-box arch 

and deck-stiffened arch bridge construction system, 

revolutionary concepts. He designed and constructed some  

twenty arch bridges. 
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The arch walls join the deck at the quarter points. This was  

probably due to two reasons. This provides a much stronger 

member flexural member at the high stress areas for non- 

uniform loads, and is much easier to construct formwork than 

closely spaced arch rib and traffic deck. 

The next page shows the two views of the bridge (Reference 3)  

and the crown and springing hinges (Reference 4). The use of  

these three hinges allows the supports to move (a reasonable 

amount), and provides resistance against temperature changes. 

Reference 4 describes the Salingatobel bridge as: 

Span = 295 ft Rise = 42.6 ft 

Uniform dead load = 5.7 kip/ft   

Concentrated  (vehicle) load) = 55 kip 

The section at the ¼ points is a concrete rectangle with the 

following parameters calculated from the paper data: 

A = 4293 in.^2 

S = 202477 in.^3 

 

Find:(1) Thrust at spring, ¼ points, and crown for dead load 

     (2) Thrust, shear, and moment at same points for 55 k 

     Load at right ¼ point 

 (3) Tensile and compressive stresses at right ¼ point 

 

Solution  

(1) location   P(kip) 

 --------------- ------ 

 Left springing  -1681 

 Left ¼ point  -1515 

 Crown   -1456 

 Right ¼ point  -1515 

 Right springing -1681 

(2) location   P(kip) Q(kip) M(kip-ft) 

 --------------- ------ ------- --------- 

 Left springing  -48  -12  0 

 Left ¼ point  -50   0  +507 

 Crown   -48  +14  0 

 Right ¼ point  -57  -26  -1521 

 Right springing -62  -12  0 

(3) axial    stress = 353 psi (compression) 

 flexural stress = 90.1 psi 

 thus rib is under compression. 
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3. TWO-HINGED AND FIXED ARCHES 
 

 A method commonly used for linear elastic statically 

 indeterminate plane structures is the “force method”. 

 The method obtains expressions for redundant supports, 

 for portal frames, gable frames, and straight beams. 

 Obtaining these redundant reduces the structure to one 

that is amenable to analysis as a statically determinant 

structure. Its drawback is the difficulty of using it for 

curved members. 

 

A better method for obtaining these redundant is the method 

of “least work”, published by Carlo Castigliano in 

1869. This method has been used for over 125 years, and is 

applied by the author H. M. Martin to indeterminant 

trusses, continuous straight beams, curved beams, as 

well as three-hinged, two-hinged, and fixed arches, a 

formidable undertaking! At the time of publication of this 

book there was no electronic computational assistance. See 

Reference 5 for his work. 

 

The basic principle of the method of least work is that the 

integral of the product of the strain energy with the 

partial derivative of the strain energy over the arch is 

zero. Strain energy may be thought of as potential energy 

stored in the member by flexural, axial, and shear 

displacements.  

The method is complicated, by not impossible, to apply as 

shown by H.M. Martin. Here we assume the effects of 

flexural strain energy only. 

Flexural strain energy = U = ∫(M^2/2EI)ds and the 

partial derivative of the strain energy with respect to H0 

is dU/dH0. 

 

The equation that must be solved is ∫M(dM/dH0)ds = 0 

where the integration is taken over the entire arch. 

 

The next page shows diagrams and equations to the left and 

right of a concentrated load, where H0 is the horizontal 

redundant force. 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com            PDHonline Course S316 www.PDHonline.org  

 

© 2016 Marvin Liebler  Page 12 of 42 

 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com            PDHonline Course S316 www.PDHonline.org  

 

© 2016 Marvin Liebler  Page 13 of 42 

 In this equation, E and I are constant, and the integration 

is done over the entire arch. Noting that dM/dH0 = -(y-y0), 

the equation above becomes 

 

 +(1/EI)∫(+H0(y-y0)^2+V0(x+x0)(y-y0)ds 

 +(1/EI)∫(+H0(y-y0)^2+V0(x+x0)(y-y0)-F1(x-x1)(y-y0))ds = 0 

 

 The first integration is done from x = -x0 to x1, and the 

second from x1 to +x0. 

ds = (1+(dy/dx)^2)^(1/2) = (1+x^2/4a^2)^(1/2) 

 

The solution to this problem, together with solutions 

incorporating axial and shear strain energies, is shown in 

on H0.c in Appendix I, for the interested reader. 

To check these calculations, a second independent source is 

required. Chapter 9 of Reference 6 contains equations 

for two-hinged arches for vertical loads, horizontal loads, 

impressed distortions, and temperature effects. 

 

For example, given an arch with: 

span = 40 ft, rise = 2 ft, A = 6 in.^2, I = 18 in.^4 

Consider two cases, a 10 kip load at the crown and a 10 kip 

load at the left quarter point. 

 

         Leontovich         H0.c – flexure only 

 Mmax    Nmax    Vmax    Mmax    Nmax    Vmax 

------- ------- -------   ------- ------- ------- 

 1st  262.500  39.666    5       262.925  39.349    5 

 2nd  399.023  28.762  5.257   398.926  28.768  5.258 

 

       H0.c – flexure + axial  H0.c-flexure+axial+shear 

 Mmax    Nmax    Vmax    Mmax    Nmax    Vmax   

------- ------- -------   ------- ------- ------- 

 1st  272.018  38.972    5   272.030  38.971    5 

 2nd  403.791  28.503  5.231     403.787  28.503  5.231 

 

Note that Reference 6 is close to H0.c, flexure only. Note 

also the increase in moment and decrease in axial force 

when axial strain energy is included. It is also seen that, 

for this shallow arch, little precision is gained by 

including the shear strain energy. 
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 An example of two-hinge arches is the whirlpool rapids 

bridge in Niagara Falls, joining Canada and the United 

States. It was opened for traffic in 1897, and is still in 

use. 

 

 It is a steel deck arch bridge, with span of 550 feet, 

roadway width of 26 feet, and a rise of 114 feet. 

 It is spandrel braced, riveted, and has two decks. The 

upper deck has a single lane for railway traffic and the 

lower deck two lanes for passenger vehicles only, no trucks 

or bicycles. 

 

 The photograph on the next page is from Reference 7 and the 

drawing from Reference 8. 

 

 For a fixed arch, using the method of least work, there are 

three (3) equations of strain energy for each redundant, 

i.e., M0, V0, and H0. This requires a very considerable 

mathematical effort, and will not be attempted here. 

 

 A major disadvantage of the least work method is that it 

does not lend itself to an analysis including the roadway 

and support columns and/or suspenders. These disadvantages 

will be overcome in the next two sections, again based on 

the work of Carlo Castigliano. 
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4. PARABOLIC ARC FINITE ELEMENT 
 

The use of a finite element for parabolic arches has several  

advantages over the classical methods. It is considerably  

easier to use,, may be used in combination with struts and/or 

hangers, and roadway for true arches, through arches, and tied 

arches. 

 

 The following development is similar to that in 

Reference 9, but the required integrations, coordinate 

transformations, and assembly with straight beam element 

below are the author’s.  

┌    ┐   ┌                         ┐ ┌    ┐ 

│ N1 │   │ k11 k12 k13 k14 k15 k16 | | u1 | 

│ V1 │   │ k21 k22 k23 k24 k25 k26 │ │ v1 │ 

│ M1 │ = │ k31 k32 k33 k34 k35 k36 │ │ ζ1 │ 

│ N2 │   │ k41 k42 k43 k44 k45 k46 │ │ u2 │ 

│ V2 │   │ k51 k52 k53 k54 k55 k56 │ │ v2 │ 

│ M2 │   │ k61 k62 k63 k64 k65 k66 │ │ ζ2 │ 

└    ┘   └                         ┘ └    ┘ 

In this model, the term kij relates the force (or moment) at 

degree of freedom (d.o.f.) i to the displacement (or rotation) 

at d.o.f. j . There are six (6) degrees of freedom in this 

planar element. For example, the term k26 relates the shear 

displacement at node 1 (V1) to the rotation node 2 (ζ2) as 

V1 = k26*ζ2.  

 

The term “stiffness matrix” is coined because the larger the 

matrix term, the more force is required to maintain a given 

displacement, i.e., measure of stiffness. 

The matrix is divided into four parts, each of dimension 3x3. 

┌   ┐   ┌           ┐ 

│   │   │ K11 │ K12 │ 

│ K │ = │-----------│  

│   │   │ K21 │ K22 │ 

└   ┘   └           ┘ 

K11 and K22 are each independent of the other 3x3 sub-matrices, 

while K21 is derived from K11 and K12 is the transpose of K21. 

 

K11 and K22 are not found directly. Instead the corresponding 

flexibility matrices are found. The determination of these 
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matrices is the difficult part of the development, as will be 

seen. The remaining steps to obtain the 6x6 matrix use standard 

matrix algebra techniques. 

In the following, only the salient items are discussed in the 

text. The main function of the computer program, arc5.c, is  

shown in Appendix II for the interested reader. 

The following page shows a sketch of relevant items for an arch 

finite element with a x<0 and that for an element with  

x>0. The elements are shown as two (2) pieces each, for clarity. 

Here n = 1 or 2 for node 1 or node 2. The coordinate system uses 

+ x axis increasing to the right and the +y axis 

increasing downward. The origin is at the arch crown. 

It should be noted that this element applies to linearly elastic 

arches, and may be used for support displacements and 

for supports at different elevations, where the defining arch 

equations are the same on both sides. The effects of uniform 

temperature changes may be found in Reference 6. 

 

(1) DERIVATION OF BASIC FORCE EQUATIONS 

 Consider x<0 and node 1 

 ∑Fx = 0  +P1*cosϕ1+Q1*sinϕ1+N*cosδ+V*sinδ = 0 

 ∑Fy = 0  -P1*sinϕ1+Q1*cosϕ1-N*sinδ+V*cosδ = 0 

 ∑M  = 0  +M1+P1*sinϕ1*(x-x1)-P1*cosϕ1*(y1-y) 

       -Q1*cosϕ1*(x-x1)-Q1*sinϕ1*(y1-y) = 0 

 As shown omn the following sketch, ϕ = 2*π – αn 

 and δ = 2*π – θ. 

 Using trigonometric theorems, 

 sinΦn = -sinαn  cosΦn = cosαn 

 sinδn = -sinθ  cosδn = cosθ 

 It can be shown that for both nodes and both sides, the 

 same equations (with the exception of node numbers)  

 obtain. Solving the equations, 

 N = +Pn*(-cosαn*cosθ-sinαn*sinθ) 

     +Qn*(+sinαn*cosθ-cosαn*sinθ) 

 V = +Pn*(-sinαn*cosθ+cosαn*sinθ) 

     +Qn*(-cosαn*cosθ-sinαn*sinθ) 

 M = -Mn+Pn*(+sinαn*(x-xn)-cosαn*(y-yn)) 

    +Qn*(+cosαn*(x-xn)+sinαn*(y-yn)) 

 

 These equations are general and apply to any curve 

 shown with coordinate axes and origin shown. 
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(2) ADAPTATION OF PARAMETERS TO PARABOLIC ARCH 

 

The equation of a parabola in terms of the coordinate 

system and origin in (1) above is: 

4*a*y = x^2, where a = span^2/16*rise 

dy/dx = x/2a and dy/dx = tanθ 

This results in: 

x  = 2*a*tanθ and 

y  = a*(tanθ)^2 

also 

xn = 2*a*tanαn and 

yn = a*(tanαn)^2 

Now the expressions for N and V remain the same as in part 

(1), and the equation for M becames 

M = -Mn +Pn*(+sinαn*(2*a*tanθ-2*a*tanαn) 

             -cosαn*(a*(tanθ)^2 –a*(tanαn)^2)) 

    +Qn*(+cosαn*(2*a*tanθ-2*a*tanαn) 

             +sinαn*(a*(tanθ)^2 –a*(tanαn)^2)) 

 

The radius of gyration of the parabola is: 

R = (1+(dy/dx)^2)^(1/2)/d^2y/dx^2 

Substituting into the equations above, 

R = 2*a*(secθ)^3 

and at θ = 0, R0 = 2*a = span^2/8*rise 

Thus the differential unit of length along the curve, ds, 

is R*dθ = 2*R0*(secθ)^3, where secθ = 1/cosθ 

 

(3) CALCULATION OF DEFLECTIONS 

 

 The method here uses Castigliano’s Second Theorem, namely 

“When a body is elastically deflected in any combination of 

loads, the deflection at any point and in any direction is 

equal to the partial derivative of strain 

energy (computed with all loads acting) with respect to a 

point located at that point and acting in that direction.” 

This was published as a thesis in 1873. It is similar to, 

but not identical with, his later method of least work in 

that both use strain energy terms. 

The integrals here are taken over the finite element, not 

the total structure. The limits of integration are α1 and 

α2. The integrals shown are those corresponding to the free 
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body at node 1, with flexibility matrix entries fij shown 

in red .  To calculate equations for node 2, substitute P2, 

Q2, and M2 for P1, Q1, and M1, respectively. Add ‘33’ to 

each entry label to find the 3x3 flexibility matrix 

corresponding to node 2. The term λ adjusts for shape of 

cross-sectional area in the shear term. Axial, shear, and 

flexural displacements are u1, v1, and Φ1, respectively. 

Derivatives shown here are partial. 

 

           ⌠α2   

u1 = +(R0/A*E)*│ N*(dN/dP1)*(secθ)^3*dθ   11,12 

               ⌡α1  

                 ⌠α2   

     +(λ*R0/A*G)*│ V*(dV/dP1)*(secθ)^3*dθ 11,12  

                 ⌡α1 

⌠α2   

     +(R0/E*I)*│ M*(dM/dP1)*(secθ)^3*dθ   11,12,13 

               ⌡α1  

 

          ⌠α2   

v1 = +(R0/A*E)*│ N*(dN/dQ1)*(secθ)^3*dθ   21,22 

               ⌡α1  

                 ⌠α2   

     +(λ*R0/A*G)*│ V*(dV/dQ1)*(secθ)^3*dθ 21,22 

                 ⌡α1                 

⌠α2   

     +(R0/E*I)*│ M*(dM/dQ1)*(secθ)^3*dθ   21,22,23 

               ⌡α1  

 

           ⌠α2   

Φ1 = +(R0/A*E)*│ N*(dN/dM1)*(secθ)^3*dθ   = 0 

               ⌡α1  

                 ⌠α2   

     +(λ*R0/A*G)*│ V*(dV/dM1)*(secθ)^3*dθ = 0 

                 ⌡α1                 

⌠α2   

     +(R0/E*I)*│ M*(dM/dM1)*(secθ)^3*dθ   31,32,33 

               ⌡α1  

The two Φ1 components are zero as neither N nor V depend on 

M1. In all cases 21 = 12, 31 = 13 and 32 = 23 as the 

3x3 flexibility matrices are symmetric.  
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The integrals are challenging, as there are eight (8) types 

to be evaluated, each consisting of one to five terms. The 

only break is that the integrations need only performed 

once, as they are identical for both nodes. 

The coefficients of the integrals, however, differ from 

node 1 to node 2. Reference 10 was a big help in evaluating 

the integrals. 

After these calculations, the flexibility corresponding to 

the 3x3 stiffness matrices, K11 and K22, may be found 

by inverting these 3x3 flexibility matrices. 

 

(4) CALCULATION OF K21 AND K12 

 In the equations for N, V, and M in parts (10 and (2), 

 replace N by P1, V by Q1 and, M by M1. 

 αn  α1 and θ  α2. Thus, letting c = cos s = sin, and 

   t  tan 

┌    ┐   ┌                                     ┐ ┌    ┐   

│ P2 │   │ -cα1*cα2-sα1*sα2 +sα1*cα2-cα1*sα2 0 │ │ P1 │ 

 │ Q2 │ = │ -sα1*cα2+cα1*sα2 –cα1*cα2-sα1*sα2 0 │ │ Q1 │  

 │ M2 │   │   A+B              C+D     -1 │ │ M1 │

 └    ┘   └                                     ┘ └    ┘

 A = +2a*sα1*(tα2-tα1)  

B = +2a*cα1*(tα2-tα1) 0  

C = -a*cα1*((tα2)^2-((tα1)^2))             

D =  +a*sα1*((tα2)^2-((tα1)^2))   

 

(5) CHECK 

 

After assembling 6x6 stiffness matrix check against 

References 6 and 9 for a fixed arch when rise =  2 ft, 

span = 40 ft, with a 10 kip gravity load at the crown. 

In this check, the subscript 2 refers to crown properties  

and the subscript 1 to support quantities. 

 

‘Flexure Only’ means only flexural strain energy used in 

calculating deflections. 

‘Flexure + Axial’ means both flexural and axial strain 

energies used. 

‘All’ means flexural, axial, and shear strain energies 

used. This only occurs for the program shown here. 

Pi and Qi in kip, Mi in kip-in. 
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         Flexure Only           

    Ref. 6    Ref. 9     arc5.c   

    -------   -------   -------   

P2   46.879     -        46.224     

Q2    5.000     -         5.000    

M2  225.000   225.424   225.424   

P1   46.945    46.894    46.894    

Q1    4.290     4.280     4.280    

M1  150.000   149.163   149.163    

 

        Flexure + Axial       

    Ref . 6   Ref. 9     arc5.c 

    -------   -------   ------- 

P2   44.311     -        44.245 

Q2    5.000     -         5.000 

M2  245.516   246.154   246.154 

P1   44.341    44.366    44.366 

Q1    3.787     3.774     3.774 

M1  109.969   108.026   108.026  

 

    All  

     Arc5.c 

    ------- 

P2   44.423   

Q2    5.000   

M2  246.309   

P1   44.347         

Q1    3.770 

M1  107.720 

 

 It is seen, that for this case, addition of the shear  

     term changes the quantities very slightly from the  

     results including the flexure and axial terms only. 
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5. FINITE ELEMENT ANALYSIS 
 

5.1 COORDINATE TRANSFORMATIONS 

 

It is necessary to transform from arc coordinates 

(P,Q,M and u,v,Δα) to Cartesian coordinates (Fx,Fy,M 

and Δx,Δy,Δζ) when analyzing finite element assemblies 

which include straight beam elements as well as arc 

elements. This involves translation of the 6x6 arc 

stiffness matrix. Translation back to arc coordinates is 

needed on a point by point basis when recovering arc force 

and displacement results from such a program. 

The transfer uses the same coordinate system as above, the 

horizontal axis to the right, the vertical axis downward 

and positive rotation clockwise. 

Consider first the transformation of quantities at a single 

point from arc coordinates to the Cartesian system  Call 

this system the xo,yo,Φ system. 

┌     ┐   ┌             ┐┌   ┐ ┌    ┐┌   ┐ 

│ Fxo │ = │ +cosΦ -sinΦ ││ P │  =  | TI || P | 

│ Fyo │   │ +sinΦ +cosΦ ││ Q │     └    ┘└   ┘ 

└     ┘   └             ┘└   ┘ 

The same matrix is used for transfer of displacements. 

 

Now generalize this matrix to include both node 1 and node 

2. This results in the 6x6 matrix, say ‘TI’. 

       ┌                                    ┐ 

    │ +cosα1 –sinα1  0     0      0    0 │ 

    │ +sinα1 +cosα1  0     0      0    0 │ 

 TI   = │    0      0   +1     0      0    0 │  

    │    0      0    0  +cosα2 -sinα2  0 │ 

    │    0      0    0  +sinα2 +cosα2  0 │ 

    │    0      0    0     0      0   +1 │ 

  └           ┘ 

α1 = angle at node 1 and α2 the angle at node 2, in arc 

coordinates. The inverse of this matrix is T, converting 

Cartesian expressions to arc expressions. 

 

Now let Fxy, Δxy, and Kxy denote parameters in Cartesian 

coordinates and Fuv, Δuv, and Kuv denote parameters in arc 

coordinates, for a two-dimensional system. 
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Dropping the matrix markings, and expressing the above 

results in the terms immediately above, we have 

 

Fxy = TI*Fuv, Fuv = T*Fxy 

Δxy = TI*Δuv, Δuv = T*Δxy  

And, for the arc coordinates, the stiffness matrix 

Fuv = Kuv*Δuv 

 

Substituting for Fuv and Δuv from above, 

T*Fxy = Kuv*T*Δxy 

Now multiply each side by TI, the inverse of T. 

 

Fxy = TI*Kuv*T*Δxy which is equivalent to 

Fxy = Kxy*Δxy 

 

Where Kxy = TI*Kuv*T 

 

Now the arch may be represented in a Cartesian system which 

includes straight beam elements. 

 

5.2 SYSTEM ANALYSIS 

 

In this analysis, the global coordinate system is the same 

as the arc coordinate system, with the crown at the origin, 

x-axis to the right, and y-axis downward. This has two 

implications. 

 

First, now transfer of arc finite elements to global 

coordinates is required. 

 

Secondly, the normal orientation in straight beam finite  

element programs (axial force vector crossed into 

perpendicular shear force vector gives CCW moments) has to 

be changed so that the axial force vector crossed into the 

perpendicular shear vector gives a CW moment. 

 

Both of these changes are made, as well as providing for 

pinned, semi-rigid, or fixed ends for the straight beam 

elements, are present in the developed program globe3.c,  
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6. STEEL DECK ARCH BRIDGE  
 

Deck arches, also called true arches, carry the end 

reactions at the springing directly into the two separate 

foundations. The arch is entirely below the roadway. 

They are usually used for crossing deep valleys with steep 

walls. Rock is generally near the surface of these walls. 

If, however, the walls have low bearing capacity, the 

foundation costs greatly increase. 

 

The arch ribs may be either solid or trussed, with trussed 

ribs suitable for longer spans. The page following shows 

the longest deck arch in the United States, the New River 

Gorge Bridge near Fayetteville, West Virginia. 

 

For shorter spans, one choice for arch ribs is a closed box 

section, which may be filled with concrete for greater 

compressive capacity. The concrete-filled type is called a 

composite section. 

The steel code allows either a plastic stress distribution 

method or a strain compatibility method for composite 

section analysis. The strain compatibility method assumes a 

maximum concrete stress of .003 inches/inch at the top of 

the concrete, with stress decreasing linearly to zero 

downward across the section. The length of this vertical 

strain is called ‘c’and the concrete stress equal to 

0.85*β*fc’ where fc’ is the specified concrete stress at 28 

days. 

 

β = 0.85, fc’ < 4000psi 

  = 0.85-0.05*(fc’-4000)/1000, 4000psi <= fc’ <= 8000psi 

  = 0.65, fc’ > 8000 psi 

 

The page following also shows both the composite and box 

only force versus moment diagrams for a large structural 

square tubing, using the strain compatibility method. The 

values plotted are those of nominal capacity, which should 

be used with the strength design method. 

The strength design method also includes capacity reduction 

factors and multiplication of the service loads. 
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Preliminary analysis and/or design of a steel deck arch 

bridge considers buckling in the plane of the arch, axial 

and flexural stresses, moment magnification,, moments due 

to non-uniform dead load, and type of connections of 

spandrel columns to the arch rib. 

 

 Buckling in Plane of the Arch 

 ----------------------------- 

 As described in Reference 11, the buckling length for a  

 two-hinged arch is one half of the total arc length = L. 

     ┌ +x0 

 L = | (1+(dy/dx)2)^(1/2)dx, where dy/dx = x/2a 

     ┘ -x0 

 Using the integral tables in Reference__, 

 

 L = x*(x^2+4a^2)^(1/2) + 2*a^2*ln(x+(x^2+4*a^2)^(1/2)) 

 evaluated from –x0 to +x0. 

  

 Moments due to Non-uniform Dead Load 

 ------------------------------------ 

The majority of the dead load is applied as point loads   

at the spandrel column locations. These moments are 

determined using the system finite element approach 

described in Section 5. above. 

 

Stresses and Moment Magnification 

--------------------------------- 

Axial and flexural stresses are determined when cross-

sectional properties of arch rib, spandrel columns, and 

roadway depth are known. The moment in the arch is 

increased by the deflection of the arch from the center 

line multiplied by the axial force, due to both dead and 

live load. 

 

The magnification Af = 1/(1-S.F.*T/A*Fe) where 

T    = arch rib thrust 

S.F. = safety factor 

A    = arch rib cross-sectional area 

Fe = ∏^2*E/(KL/r)^2 

E = modulus of elasticity 
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     K depends upon the arch type and 

 rise/span ratio as: 

 Rise/Span  3-Hinged  2-Hinged  Fixed 

 --------  --------  ----- 

  0.1-0.2    1.16    1.04   0.70 

  0.2-0.3    1.13    1.10   0.70 

  0.3-0.4    1.16    1.16   0.72 

 

L   = length of arc rib/2 

r   = (I/A)^(1/2) 

I   = strong axis moment of inertia 

S   = I/(depth/2) for symmetric cross-sections 

 

Types of Connections 

-------------------- 

The moments induced in the arch ribs and the spandrel 

columns are a strong function of the degree of restraint 

to moment of the connections. AISC defines the restraints 

as being of three types, namely simple,partially restrained 

(PR), and fully restrained (FR). These restraints are also 

known as pinned, semi-rigid, and rigid. The connected are 

defined as 

 

simple : ks < = 2*E*I/l 

PR  : 2*E*I/l < ks < 20*E*I/l 

FR  : 20*E*I/l <= ks 

ks = connection stiffness, usually in kip-in./radian 

l  = column length 

 

Example of Two-Hinged Steel Deck Arch Bridge 

******************************************** 

Span         = 300 ft 

Rise         =  40 ft 

Arch Rib        = box section 

flanges = pl 2” x 30” 

           webs    = pl 1” x 56” 

         ASTM F1554, Grade 36 

Arch Rib + Bracing DL = 1.5 kip/ft 

Deck DL     = 3.0 kip/ft 

Deck LL         = 0.640 kip/ft 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com            PDHonline Course S316 www.PDHonline.org  

 

© 2016 Marvin Liebler  Page 29 of 42 

Arch Rib Section Properties 

--------------------------- 

I = 137547 in.^4 

S = 4584.8 in.^3 

A = 260.00 in.^2 

r = 23.001 in. 

 

Buckling in the Plane of the Arch 

 --------------------------------- 

 Rise/Span = .1333 so that K = 1.04 

 The arc rib length/2 calculates as 1882.02” 

 Fa = allowable axial stress 

 Fa = Fy/(5/3+3*(Kl/r)/8*Cc-((Kl/r)/8*Cc)^3) 

 Fa = 19.136 ksi 

 

 Moments Due to Total Dead Load 

 ------------------------------------ 

The diagrams on the next page show arch alone, arch with 

columns and deck, and arch with columns, deck and 

diagonals. 

First consider the spandrel columns only, maximum values 

shown. 

Δ = arch deflection  N, V, and M are arch values. 

Connections refer to  spandrel column connections. 

Conn.  Δ(in.)  N(kip)  V(kip)  M(k”) 

---------  ------  ------ -------  ----- 

Simple   1.713   1494   116.1   19582 

Fixed       1.471   1507   109.4   17147 

 

Now consider the spandrel columns with diagonals. 

Connections refer to both columns and diagonals 

Conn.  Δ(in.)  N(kip)  V(kip)  M(k”) 

---------  ------  ------ -------  ----- 

Simple   0.689   1020   119.8   21020 

Fixed       0.804   1045   104.7   20670 

 

In this example the use of diagonals lowers the maximum 

axial force, but it achieved at the cost of extra material, 

more complicated connections, and increased moment. 

It should also be noted that simple connections eliminate 

column moments. 
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7. TIED ARCHES 
 

Tied arches balance the arch horizontal reactions by a 

tension tie between the ends of the arch. Tied arches are 

generally the through type, although the bridge may be 

constructed with the deck midway between the arch crown and 

the springing. 

 

Tied arches are generally used where deep foundations are 

required. In the tied arch, only vertical loads need be 

transmitted to earth by the foundations. 

 

Load is transmitted from the roadway to the arch by hangers 

in tension. Hangers in the United States have traditionally 

been of the two or four bridge strand or bridge rope. 

Traditional hangers have been vertical. Recent designs have 

examined network hangers. These systems connect arch and 

deck at non-vertical angles. 

 

Moment magnification is not used for tied arches. At any 

point, the tie and the arch deflect approximately the same 

amount. Therefore the moment arm between the tension in the 

tie and the horizontal component of thrust 

remains the same. 

 

Unlike the deck arch, temperature change has little effect 

on the arch forces if the arch and tie remain at 

essentially the same temperature. 

The division of live moment between he arch rib and tie 

girder depends upon their respective moments of inertia, 

As shown in the following example. 

 

Example of Two-Hinged Steel Tied Arch Bridge 

******************************************** 

Use the same properties as the deck arch example. 

300 ft span, 40 ft rise 

Arch Rib + Bracing DL = 1.5 kip/ft 

Deck DL          = 3.0 kip/ft 

Deck LL (half span)   = 0.640 kip/ft 

Arch cross section: A = 120 in.^2, I = 137347 in.^4 

Deck area and moment of inertia varies as shown. 
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APPENDIX 1 
H0.c is a program to find the redundant horizontal reaction for 

a two-hinged arch. 

    START 

      | 

   DECLARATION OF VARIABLES  

      | 

          INPUT ARCH CHARACTERISTICS 

      | 

  SOLVE FOR FLEXURAL STRAIN 

      ENERGY DENOMINATOR 

      | 

  SOLVE FOR FLEXURAL STRAIN 

               ENERGY NUMERATOR 

      | 

   AS ABOVE FOR AXIAL STRAIN ENERGY 

      | 

   AS ABOVE FOR SHEAR STRAIN ENERGY 

      | 

  SOLVE FOR THE REDUNDANT H0  

      | 

      PRINT M, V, N FOR SELECTED POINTS 

          | 

       FINISH 

 

/**************************************************************** 

 *             * 

 *            * 

 * H0.c : Castigliano's least work theorem :                    * 

 *   Two-Hinged Arch : Solve for horizontal reaction    * 

 *        and plot N,V, and M       * 

 *        See text for explanations of integrals    * 

 *   div = number of plotted points      * 

 *   mode = 1 for flexural strain energy     * 

 *          2 for 1 plus axial strain energy    * 

 *     3 for 2 plus shear strain energy    * 

 *   inputs in consistent units, eg., kip, inches   * 

 *            * 

 ****************************************************************/ 

 

#include<math.h> 

#include<stdio.h> 

#include<stdlib.h> 

int main(void) 

{ 

  /* DECLARATIONS */ 
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 int div,mode; 

 double A,E,eta,F1,G,I,V0,x0,x1,y0;   

 double a,alf,arg0,arg1,H0,H1,M,N,R0,theta,theta0,theta1,V,x,y; 

 double II1,II2,II3,II4,II5,II6,II7,II8,II9,II10,II11,II12,II13; 

 double num,den; 

 double pi = 3.141592653589793; 

 FILE *inn; 

 FILE *out; 

 

  /* INPUTS AND PARAMETERS */ 

 

 inn = fopen("H0.in","r"); 

 out = fopen("H0.out","w+"); 

 fscanf(inn,"%i %i %lf%lf %lf %lf %lf %lf %lf %lf %lf %lf", 

      &div,&mode,&A,&E,&eta,&F1,&G,&I,&V0,&x0,&x1,&y0); 

 fclose(inn); 

 

  /* CALCULATE ARCH PARAMETERS */ 

 

 a = x0*x0/(4.0*y0); 

 alf = 2.0*a; 

 arg0 = alf*alf+x0*x0; 

 arg1 = alf*alf+x1*x1; 

 R0 = 2.0*a; 

 theta0 = atan2(x0,(2.0*a)); 

 theta1 = atan2(x1,(2.0*a)); 

  

  /* H0 (flexural strain energies) INTEGRALS */ 

 

 II1 = +x0*sqrt(arg0) 

   +(alf*alf/2.0)*(log(+x0+sqrt(arg0)) 

   -log(-x0+sqrt(arg0))); 

 II1 = +(y0*y0/alf)*II1; 

 II1 = +II1/(E*I); 

 

 II2 = +(x0/2.0)*arg0*sqrt(arg0) 

   -(alf*alf/4.0)*x0*sqrt(arg0) 

   -(alf*alf*alf*alf/8.0)*(log(x0+sqrt(arg0)) 

   -log(-x0+sqrt(arg0))); 

 II2 = -(y0/(alf*alf))*II2; 

 II2 = +II2/(E*I); 

 

 II3 = +2.0*x0*x0*x0*arg0*sqrt(arg0)/3.0 

   -x0*arg0*arg0*sqrt(arg0)/3.0 

   +alf*alf*x0*arg0*sqrt(arg0)/12.0 

   +alf*alf*alf*alf*x0*sqrt(arg0)/8.0 

   +alf*alf*alf*alf*alf*alf*(log(x0+sqrt(arg0)) 

   -log(-x0+sqrt(arg0)))/16.0; 

  II3 = +II3/(4.0*alf*alf*alf); 

 II3 = +II3/(E*I); 

 

  /* V0 (flexural strain energies) INTEGRALS */ 
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 II4 = +x0*arg0*sqrt(arg0)/2.0-(alf*alf*x0/4.0)*sqrt(arg0) 

   -(alf*alf*alf*alf/8.0)*(log(+x0+sqrt(arg0)) 

   -log(-x0+sqrt(arg0))); 

 II4 = -(V0*x0/(2.0*alf*alf))*II4; 

 II4 = +II4/(E*I); 

 

 II5 = +x0*sqrt(arg0)+(alf*alf/2.0)*(log(+x0+sqrt(arg0)) 

   -log(-x0+sqrt(arg0))); 

 II5 = +(V0*x0*y0/alf)*II5; 

 II5 = +II5/(E*I); 

 

  /* F1 (flexural strain energies) INTEGRALS */ 

 

 II6 = +arg0*arg0*sqrt(arg0)/5.0-alf*alf*arg0*sqrt(arg0)/3.0 

   -arg1*arg1*sqrt(arg1)/5.0+alf*alf*arg1*sqrt(arg1)/3.0; 

 II6 = +F1*II6/(2.0*alf*alf); 

 II6 = +II6/(E*I); 

  

 II7 = +arg0*sqrt(arg0)/3.0 

   -arg1*sqrt(arg1)/3.0; 

 II7 = -F1*y0*II7/alf; 

 II7 = +II7/(E*I); 

 

 II8 = +x0*arg0*sqrt(arg0)/4.0-alf*alf*x0*sqrt(arg0)/8.0 

   -(alf*alf*alf*alf/8.0)*log(x0+sqrt(arg0)) 

   -x1*arg1*sqrt(arg1)/4.0+alf*alf*x1*sqrt(arg1)/8.0 

   +(alf*alf*alf*alf/8.0)*log(x1+sqrt(arg1)); 

 II8 = -F1*x1*II8/(2.0*alf*alf); 

 II8 = +II8/(E*I); 

 

 II9 = +x0*sqrt(arg0)/2.0+(alf*alf/2.0)*log(x0+sqrt(arg0)) 

   -x1*sqrt(arg1)/2.0-(alf*alf/2.0)*log(x1+sqrt(arg1)); 

 II9 = +F1*x1*y0*II9/alf; 

 II9 = +II9/(E*I); 

 

  /* H0 (axial strain energy) INTEGRALS */ 

 

 II10 = +log(tan(+theta0/2.0+pi/4.0)) 

   -log(tan(-theta0/2.0+pi/4.0)); 

 II10 = +II10*R0/(E*A); 

  

  /* F1 (axial strain energy) INTEGRALS */ 

 

 II11 = +1.0/cos(theta0) 

   -1.0/cos(theta1); 

 II11 = -II11*R0*F1/(E*A); 

 

  /* H0 (shear strain energy) INTEGRALS */ 

 

 II12 = +tan(theta0)*tan(theta0)*sin(theta0)+sin(theta0) 

   -(1.0/2.0)*log(tan(+theta0/2.0+pi/4.0)) 

   +(1.0/2.0)*log(tan(-theta0/2.0+pi/4.0)); 

 II12 = +II12*eta*R0/(G*A); 
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  /* F1(shear strain energy) INTEGRALS */ 

 

 II13 = +1.0/cos(theta0) 

   -1.0/cos(theta1); 

 II13 = +II13*eta*R0*F1/(G*A); 

 

  /* CALCULATE AND PRINT H0exact */ 

 

 switch(mode) 

 { 

  case 1: 

   num = +II4+II5+II6+II7+II8+II9; 

   den = +II1+II2+II3; 

   H0 = num/den; 

   break; 

  case 2: 

   num = +II4+II5+II6+II7+II8+II9+II11; 

   den = +II1+II2+II3+II10; 

   H0 = num/den; 

   break; 

  case 3: 

   num = +II4+II5+II6+II7+II8+II9+II11+II13; 

   den = +II1+II2+II3+II10+II12; 

   H0 = num/den; 

   break; 

  default: ; 

 } 

 

 fprintf(out,"H0exact    = ");fprintf(out,"%21.9f\n\n",H0); 

 

  /* PLOT x,N,V.M */ 

  

 for(x=-x0;x<=+x0;x+=2.0*x0/div) 

 { 

  theta = atan2(x,(2.0*a)); 

  y = x*x/(4.0*a); 

  if(x<x1) 

  { 

   N = -H0*cos(theta)+V0*sin(theta); 

   V = +V0*cos(theta)+H0*sin(theta); 

   M = +H0*(y0-y)-V0*(x+x0); 

  } 

  else 

  { 

   N = -H0*cos(theta)+(V0-F1)*sin(theta); 

   V = +(V0-F1)*cos(theta)+H0*sin(theta); 

   M = +H0*(y0-y)-V0*(x+x0)+F1*(x-x1); 

  } 

  fprintf(out,"%6.1f %16.6e %16.6e %16.6e\n",x,N,V,M); 

 } 

 

 fclose(out); 

 return 0; 

} 
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APPENDIX II 
 

The main function of arc5.c, a program to generate the stiffness 

matrices, both in uv-coordinates and xy-coordinates 

is shown in this appendix. 

 

The following table relates the subroutines in arc5.c to their 

function. The element numbers differ by one less than those in 

the text because arrays in C start with label ‘0’, not ‘1’. 

The text nomenclature, starting with ‘1’ for arrays, is common 

in the literature. It should also be noted that literature 

examples seldom include strain energy shear terms. 

 

SUBROUTINE EVALUATES 

---------- --------------------------------------------- 

integrals  required integrals, from first to second node 

matrix  required coefficients for each integral 

findf  combines the above two subroutines to find 

the 3x3 flexibility matrices. fm, fp, and fq that 

represent the flexure, axial, and shear terms, 

respectively 

crossover  find K21 given K11 

transfer convert stiffness matrix in terms of du, dv, and 

dθ to one in terms of rectangular coordinates dx, 

dy, and dθ  

 

/*   ARC5.c              

     calculates 6x6 stiffness matrix for member with:                

     (1)  centerline = parabola defined by y = x^2/4a where        

          a = span^2/4*rise             

     (2)  abuments at same elevation - if abutments at different    

      elevations, redefine the axis from x = level, y = down, to  

      x = bridge line. y axis perpendicular to x, and loads  

      adjusted to new axes.      

     (3)  member is prismatic (constant cross-section)         

     (4)  x0,y0,x1,y1 nodes near and far (0 and 1) coordinates        

     (5)  theta0, theta1 nodes 0 and 1 angles          

     (6)  A     = cross-section area, in.^2          

     (7)  E     = flexural and axial modulus of elasticity, ksi        

     (8)  eta = 1.2, correction factor for rectangular section       

     (9)  G = shear modulus of elasticity          

     (10) I     = strong axis moment of inertia, in.^4         

     (11) R0    = radius of curvature at crown          

     (12) KUV   = 6x6 stiffness matrix, in terms of a, theta        

     (13) KXY   = 6x6 stiffness matrix, in therms of x,y        
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     (14) KA    = 3x3 stiffness matrix, upper left, in terms of a,  

                  theta      

     (15) KB,KC = crossover 3x3 stiffness matrices                            

     (16) KD    = 3x3 stiffness matrix, lower right, in terms of a,  

                  theta   

     (17) ff    = working 3x3 stiffness matrix          

     (18) loc   == 0 -> 00 3x3 matrix loc!= 0 -> 11 3x3 matrix            

     (19) zed   = number of flexibility terms used as :  

               1 = flexure only, 2 = 1 + axial,* 3 = 2 + shear */      

#include<math.h> 

#include<stdio.h> 

#include<stdlib.h> 

#include"hdrinv3.h" 

 

int main(void) 

{ 

  /* INPUT DATA */ 

 

 FILE *inn; 

 FILE *out; 

 inn = fopen("arc5.in","r"); 

 out = fopen("arc5.out","w+"); 

 fscanf(inn,"%lf %lf %lf %lf %lf %lf %lf %lf %lf %i", 

             &AA,&EE,&eta,&GG,&II,&rise,&span,&X0,&X1,&zed);   

 fclose(inn); 

 

  /*  USE PARAMETRIC EQUATIONS TO FIND aa,R00,theta0,theta1 */ 

 

 aa = span*span/(16.0*rise); 

 R00 = 2.0*aa; 

 theta0 = atan2((X0/(2.0*aa)),1.0); 

 theta1 = atan2((X1/(2.0*aa)),1.0); 

  

  /* ZERO OUT ARRAYS */ 

 

 for(ii=0;ii<=13;ii++) 

 { 

  rr[ii] = 0.0; 

 } 

 

 for(ii=0;ii<=7;ii++) 

 { 

  tt[ii] = 0.0; 

 } 

 

 for(ii=0;ii<=2;ii++) 

 { 

  for(jj=0;jj<=2;jj++) 

  { 

   ff[ii][jj] = 0.0; 

   KA[ii][jj] = 0.0; 

   KB[ii][jj] = 0.0; 

   KC[ii][jj] = 0.0; 

   KD[ii][jj] = 0.0; 
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  } 

 } 

 

 for(ii=0;ii<=5;ii++) 

 { 

  for(jj=0;jj<=5;jj++) 

  { 

   KUV[ii][jj] = 0.0; 

   KXY[ii][jj] = 0.0; 

  } 

 } 

 

  /* FIND INTEGRATION MATRIX */ 

 

 integrals(theta0,theta1,tt); 

 

  /* FIND UPPER LEFT 3x3 STIFFNESS MATRIX */ 

 

 loc = 0; 

  

 matrix(loc,aa,theta0,theta1,rr); 

 

 findf(zed,eta,AA,EE,GG,II,R00,tt,rr,ff); 

  

 invert3x(ff);  

 

 for(ii=0;ii<=2;ii++) 

 { 

  for(jj=0;jj<=2;jj++) 

  { 

   KA[ii][jj] = ff[ii][jj]; 

  } 

 } 

  

  /* FIND CROSSOVER MARTICES, UPPER RIGHT AND LOWER LEFT */ 

 

 crossover(aa,theta0,theta1,KA,KC); 

 

 for(ii=0;ii<=2;ii++) 

 { 

  for(jj=0;jj<=2;jj++) 

  { 

   KB[jj][ii] = KC[ii][jj]; 

  } 

 } 

 

  /* FIND LOWER RIGHT 3x3 MATRIX */ 

 

 loc = 1; 

 

 matrix(loc,aa,theta0,theta1,rr); 

 

 findf(zed,eta,AA,EE,GG,II,R00,tt,rr,ff); 
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 invert3x(ff);  

 

 for(ii=0;ii<=2;ii++) 

 { 

  for(jj=0;jj<=2;jj++) 

  { 

   KD[ii][jj] = ff[ii][jj]; 

  } 

 }  

 

  /* FIND KUV AND PRINT */ 

 

 for(ii=0;ii<=2;ii++) 

 { 

   

  for(jj=0;jj<=2;jj++) 

  { 

   KUV[ii][jj] = KA[ii][jj]; 

   KUV[ii][jj+3] = KB[ii][jj];  

   KUV[ii+3][jj] = KC[ii][jj]; 

   KUV[ii+3][jj+3] = KD[ii][jj]; 

  } 

 } 

 

 fprintf(out,"KUV[6][6]\n");fprintf(out,"---------\n\n"); 

 

 for(ii=0;ii<=5;ii++) 

 { 

  for(jj=0;jj<=5;jj++) 

  { 

   fprintf(out,"%18.9e",KUV[ii][jj]); 

  } 

  fprintf(out,"\n"); 

 } 

 fprintf(out,"\n\n\n"); 

 

  /* FIND KXY AND PRINT */ 

 

 transfer(theta0,theta1,KUV,KXY); 

 

 fprintf(out,"KXY[6][6]\n");fprintf(out,"---------\n\n"); 

 

 for(ii=0;ii<=5;ii++) 

 { 

  for(jj=0;jj<=5;jj++) 

  { 

   fprintf(out,"%18.9e",KXY[ii][jj]); 

  } 

  fprintf(out,"\n"); 

 } 

 fclose(out); 

 return 0; 

} 
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